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Abstract: In this paper, we present a comparative study of several machine learning (ML) ap-
proaches for accurate office room occupancy detection through the analysis of multi-sensor data. 
Our study utilizes the Occupancy Detection dataset, which incorporates data from Temperature, 
Humidity, Light, and CO2 sensors, with ground-truth labels obtained from time-stamped images 
captured at minute intervals. Traditional ML techniques including Decision Trees (DT), Gaussian 
Naïve Bayes (NB), K-Nearest Neighbors (KNN), Logistic Regression (LR), Support Vector Machines 
(SVM), Multilayer Perceptron (MLP), and Quadratic Discriminant Analysis (QDA) are compared 
alongside advanced ensemble methods like RandomForest (RF), Bagging, AdaBoost, Gradi-
entBoosting, ExtraTrees as well as our custom voting and multiple stacking classifiers. Also, hy-
perparameter optimization was performed for selected models with a view to improving classifica-
tion accuracy. The performances of the models were evaluated through rigorous cross-validation 
experiments. The results obtained highlight the efficacy and suitability of varying candidate and 
ensemble methods, demonstrating the potential of ML techniques in enhancing the detection accu-
racy. Notably, LR and SVM exhibited superior performance, achieving average accuracies of 98.88 
± 0.70% and 98.65 ± 0.96%, respectively. Additionally, our custom voting and stacking ensembles 
demonstrated improvements in classification outcomes compared to base ensemble schemes, as in-
dicated by various evaluation metrics. 

Keywords: machine learning; ensemble learning; room occupancy detection; multi-sensor data 
 

1. Introduction 
Occupancy detection refers to the process of determining whether a space or area is 

currently occupied by people or objects. This can be accomplished through various means 
and technologies, and serves several purposes in different domains, including building 
management, safety, security, energy conservation, and automation. For instance, effi-
cient energy management in office spaces is today a concern, where environmental sus-
tainability and cost-effectiveness go hand in hand. Estimates indicate that precise office 
room occupancy detection can lead to energy savings ranging from 30% to 42% [1,2]. 
These savings can be further optimized, reaching up to 80%, when occupancy data is in-
tegrated into HVAC (Heating, Ventilation, and Air Conditioning) control algorithms [3]. 
Therefore, there is a growing need for accurate occupancy detection methods to harness 
the full potential of these energy-saving opportunities. This quest for precision in occu-
pancy detection has led to substantial research efforts, especially in the application of ML 
models. Previous studies have shown that, with sufficient relevant data, the accuracy of 
occupancy detection can yield remarkable performance level [4–6]. In this paper, we uti-
lize multi-sensor data which is becoming increasingly popular in ML applications as it 
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can provide more accurate and reliable results compared to using a single sensor. The 
significant contributions of this paper include: 
1. Systematic comparison of a wide range of ML models, from traditional to advanced 

ensemble methods. 
2. Optimizing hyperparameters of selected models in order to enhance performance. 
3. Evaluating a custom voting and multiple stacking classifiers and demonstrating their 

role in improving classification performance. 

2. Related Work 
Several ML-based data-driven techniques have been utilized for occupancy detection 

in buildings. Candanedo and Feldheim [7] assessed the accuracy of predicting office room 
occupancy based on data from light, temperature, humidity, and CO2 sensors, using var-
ious statistical classification models in R programming language. They used three datasets 
for training and testing, considering whether the office door was open or closed during 
occupancy. The best accuracies (ranging from 95% to 99%) were achieved with Linear Dis-
criminant Analysis (LDA), Classification and Regression Trees (CART), and RF models. 
The inclusion of time stamp information generally improved accuracy, and the LDA 
model achieved occupancy estimates of 85% and 83% using only the temperature predic-
tor in two different testing sets. In their study, Yang et al. [8] employed KNN alongside 
various environmental and specialized sensors for identifying and counting the number 
of occupants. Their findings show the potential to attain accuracy levels ranging from 
95.4% to 97.5% for binary occupancy detection. Additionally, when estimating the count 
of occupants, the root mean square error (RMSE) falls within the range of 0.121 to 0.79. 
Dong et al. [9] and Lam et al. [10] paired SVM with a sensor network to gauge the occu-
pancy levels within an office building. Their investigations yielded a consistent accuracy 
rate of approximately 75% for detecting the number of people present. Zuraimi et al. [11] 
utilized a combination of CO2 data and feed forward neural networks (FFNNs) to estimate 
the number of occupants in a theater resulting in an average accuracy of 70%. Similarly, 
Dong et al. [9] Lam et al. [10] introduced an environmental sensor network test-bed and 
demonstrated its utilization for detecting occupancy numbers within an office building. 
Their works employed a neural network to identify the number of occupants, achieving 
an accuracy rate of 75%. In their study, Kraipeerapun et al. [12] introduced two ap-
proaches for determining occupancy. The initial approach employed a combination of 
stacking and a multiclass neural network, while the second method fused stacking with a 
dual-output neural network specifically designed for occupancy detection. The validation 
outcomes demonstrated accuracy levels ranging from 68.87% to 91.18%. Kim et al. [2] in-
troduced a label noise filtering method, which improves occupancy detection accuracy by 
eliminating noisy data collected from sensors. The results yielded an average accuracy 
increase of 1.5%, with the CART model showing a significant improvement from 94.3% to 
97.6%. Dutta and Roy [13] developed the OccupancySense model which addresses occu-
pancy detection and prediction by fusing Internet of Things (IoT) indoor air quality data 
with static and dynamic context data, achieving higher forecasting accuracy using Cat-
Boost algorithm. The model outperforms other ML algorithms, and with a non-intrusive 
approach, accurately detecting occupancy, predicting headcount, and estimating room 
occupancy density at 99.85%, 93.2%, and 95.6% accuracy respectively. Elkhoukhi et al. [14] 
highlights the limitations of batch learning techniques and introduces three non-station-
ary ML algorithms for stream data processing. The experimental results demonstrate that 
these algorithms, integrated into an IoT-based platform, can accurately predict the num-
ber of occupants in smart buildings with an accuracy exceeding 83% while efficiently uti-
lizing computational resources. 
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3. Materials and Methods 
3.1. Data Collection and Preprocessing 

We utilized the publicly available Occupancy Detection dataset, which includes sen-
sor data from Temperature, Humidity, Light, and CO2 sensors, as well as ground-truth 
labels obtained from time-stamped images captured at minute intervals [7]. 

3.2. Feature Engineering 
We performed correlation analysis on the dataset to identify relevant features for the 

occupancy detection task. Most features have strong positive correlations with the target 
variable (occupancy) except for humidity and humidity ratio with relatively week corre-
lation with the target variable. However, we retained all features without thresholding 
any sensor data in our analysis. Truncating below a specific threshold and trying other 
feature combinations is left for future research. 

3.3. Model Selection 
For our analysis, we selected a set of traditional ML as well as advanced (ensemble) 

models for the comparative study. The traditional ML models include Decision Trees, 
Gaussian Naïve Bayes, KNN, LR, SVM, MLP, QDA. The Ensemble methods include RF, 
Bagging, AdaBoost, GradientBoosting and ExtraTrees. Furthermore, we tried several Cus-
tom ensemble methods as follows: 
1. Voting Classifier, consisting of LR, RF, and SVM 
2. StackingClassifier1, consisting of LR, RF, and SVM as base estimators with LR as the 

final estimator 
3. StackingClassifier2, consisting of Decision Tree, KNN, and MLP Classifiers as base 

estimators with LR as the final estimator 
4. Stacking Classifier3, consisting of GaussianNB, SVM, and QDA as base estimators 

with LR as the final estimator 
5. StackingClassifier4, consisting of RF, MLP Classifier, and SVM as base estimators 

with LR as the final estimator 

3.4. Hyperparameter Optimization 
In order to get better performance, we further performed parameter tuning via grid 

search for RF, SVM, and KNN classifiers. Each grid search was performed with 5-fold 
cross-validation. For RF, the search was conducted over: number of estimators (10, 20, 30), 
maximum depth (15, 20, 30, 50) and criterion (gini, entropy). Also, the SVM was tuned 
over: C (1, 10, 100) and kernel types (linear, poly, rbf, sigmoid). Finally, KNN was opti-
mized by searching for the optimal number of neighbors (2, 3, 5, 10, 15, 20). 

3.5. Model Training and Evaluation 
Rigorous cross-validation experiments (using 5-fold cross-validation) were per-

formed in order to assess the performance of the models. We then split the dataset into 
70% training and 30% testing and retrained each model on the training set and evaluate 
the models’ performance on the test set using accuracy, precision, recall, and F1-score as 
performance metrics. 

4. Results and Discussions 
Tables 1 and 2 respectively show the 5-fold cross validation as well as the testing 

results for the Traditional ML models while Tables 3 and 4 respectively show the 5-fold 
cross validation as well as the testing results for the ensemble models. 
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Table 1. Cross-validation results for the Traditional ML methods. 

Model Average  
Accuracy 

Average  
Precision  

Average  
Recall 

Avergae  
F1-Score 

SVM 0.9865 ± 0.0096 0.9500 ± 0.0368 0.9958 ± 0.0016 0.9720 ± 0.0193 
LR 0.9888 ± 0.0070 0.9582 ± 0.0280 0.9958 ± 0.0029 0.9764 ± 0.0144 
KNN 0.9639 ± 0.0102 0.9283 ± 0.0145 0.9151 ± 0.0582 0.9204 ± 0.0245 
DT 0.8363 ± 0.1437 0.7511 ± 0.2595 0.8419 ± 0.1246 0.7477 ± 0.1506 
NB 0.9368 ± 0.0249 0.7915 ± 0.0654 0.9983 ± 0.0011 0.8814 ± 0.0410 
MLP 0.9699 ± 0.0162 0.9375 ± 0.0504 0.9377 ± 0.0806 0.9340 ± 0.0375 
QDA 0.9482 ± 0.0393 0.8359 ± 0.1150 0.9954 ± 0.0024 0.9042 ± 0.0680 

Table 2. Results of the Traditional ML methods on test set. 

Model Accuracy Precision Recall F1-Score 
SVM 0.9906 0.9644 0.9958 0.9798 
LR 0.9904 0.9650 0.9943 0.9794 
KNN 0.9908 0.9735 0.9866 0.9800 
DT 0.9911 0.9809 0.9802 0.9805 
NB 0.9668 0.8748 0.9979 0.9323 
MLP 0.9531 0.8311 0.9986 0.9072 
QDA 0.9825 0.9342 0.9936 0.9630 

Table 3. Cross-validation results for the ensemble methods. 

Model Accuracy Precision Recall F1-Score 
RF 0.8589 ± 0.1249 0.7783 ± 0.2526 0.8703 ± 0.1073 0.7797 ± 0.1361 
Bagging 0.9337 ± 0.0167 0.8925 ± 0.0908 0.8360 ± 0.1174 0.8516 ± 0.0424 
AdaBoost 0.9352 ± 0.0283 0.8180 ± 0.1023 0.9530 ± 0.0291 0.8754 ± 0.0479 
GBoosting 0.9552 ± 0.0200 0.8962 ± 0.0949 0.9322 ± 0.0435 0.9084 ± 0.0326 
ExtraTrees 0.9140 ± 0.0266 0.8075 ± 0.0496 0.8311 ± 0.1465 0.8115 ± 0.0740 
Voting 0.9861 ± 0.0096 0.9488 ± 0.0368 0.9954 ± 0.0018 0.9711 ± 0.0194 
Stacking1 0.9889 ± 0.0072 0.9593 ± 0.0285 0.9952 ± 0.0026 0.9767 ± 0.0149 
Stacking2 0.9765 ± 0.0119 0.9359 ± 0.0473 0.9682 ± 0.0366 0.9505 ± 0.0244 
Stacking3 0.9880 ± 0.0082 0.9579 ± 0.0335 0.9933 ± 0.0051 0.9749 ± 0.0168 
Stacking4 0.9874 ± 0.0098 0.9541 ± 0.0385 0.9952 ± 0.0028 0.9738 ± 0.0199 

Table 4. Experimental results of the Ensemble methods on test set. 

Model Accuracy Precision Recall F1-Score 
RF 0.9935 0.9838 0.9880 0.9859 
Bagging 0.9914 0.9823 0.9802 0.9812 
AdaBoost 0.9903 0.9675 0.9908 0.9790 
GBoosting 0.9908 0.9709 0.9894 0.9800 
ExtraTrees 0.9932 0.9858 0.9844 0.9851 
Voting 0.9906 0.9657 0.9943 0.9798 
Stacking1 0.9932 0.9824 0.9880 0.9852 
Stacking2 0.9921 0.9789 0.9866 0.9827 
Stacking3 0.9885 0.9577 0.9936 0.9754 
Stacking4 0.9930 0.9811 0.9887 0.9849 

From Table 1, LR and SVM achieved the highest validation accuracies of 98.88% and 
98.65%, respectively. These models also demonstrated strong precision, recall, and F1-
Score values, indicating their suitability for accurate occupancy detection. Also, for the 
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test data (Table 2), SVM, LR, KNN, and DT models exhibit high accuracy levels above 99%. 
The ensemble methods (Table 3), particularly our voting and stacking models, show high 
performance, with stackingclassifer1 achieving the highest validation accuracy of approx-
imately 98.89 ± 0.72% outperforming others. Classification results on the test data (Table 
4) indicate that most ensemble methods achieve high accuracy levels, with RF, ExtraTrees 
and StackingClassifier1 being particularly notable achieving above 99.30% accuracy. 
These models also exhibit strong precision, recall, and F1-Score values, reflecting their ef-
fectiveness in making accurate predictions. Also, the voting ensemble which recorded a 
slightly lower accuracy, still demonstrates a good balance between precision and recall. 
For the optimized models, we finally arrived at the following as the best hyperparameters 
for the respective algorithms: SVM (C = 10 and kernel = ‘linear’), KNN (n_neighbors = 20), 
RF (n_estimators = 50, max_depth = 44, and criterion = ‘entropy’). Utiliziing these param-
eters, the test results presented in Table 5 were obtained. The performance improvements 
recorded for KNN and RF show that hyperparameter optimization can improve the pre-
dictive accuracy of ML classifiers. 

Table 5. Experimental results of the Optimized methods on test set. 

Model Accuracy Precision Recall F1-Score 
Grid-SVM 0.9887 0.9683 0.9957 0.9818 
Grid-KNN 0.9920 0.9703 0.9946 0.9823 
Grid-RF 0.9939 0.9807 0.9924 0.9865 

5. Conclusions 
In conclusion, this paper has presented a comparative study of ML approaches for 

office room occupancy detection using multi-sensor data. Our findings indicate that LR 
and SVM achieved impressive performance. Furthermore, our custom stacking ensembles 
demonstrated significant improvements over most base ensemble schemes. The study 
provides a comprehensive insight on the potential of several ML techniques in the domain 
of room occupancy detection. 
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