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Abstract: Bioisosteres of amide bonds such as 4,5-disubstituted-1,2,3-triazoles (4,5-DS-1,2,3-Ts) and 

1,5-disubstituted tetrazoles (1,5-DST) are present in compounds with important biological activities 

like antineoplastic, antibacterial, antifungal and antiparasitic; and antifungal, antiparasitic, antivi-

ral, and anti-inflammatory. In the present work, we describe the synthesis of tetrazole-triazole bis-

heterocycles via the Ugi-Azide strategy. The target molecules were synthesized with moderate 

yields, under mild conditions, employing 2H-1,2,3-triazole aldehyde as input. 
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1. Introduction 

Multicomponent reactions (MCRs) have proven to be efficient synthetic tools com-

pared to traditional multistep syntheses. They are defined as one-pot processes where 

three or more reagents interact together under the same reaction conditions [1]. MCRs 

are considered domino reactions [2]. 

MCR products are complex and exhibit great molecular diversity, allowing the gen-

eration of libraries of compounds with importance for several fields such as optics, agro-

chemistry, and medicinal chemistry, among others [3]. Heterocyclic chemistry is an im-

portant topic in the MCR field, where heterocycles can be either synthesized via a multi-

component process or via MCR-post transformation or functionalized via MCRs [4]. 

Among MCRs, those based on isocyanide chemistry (IMCRs) are among the more 

important and widely used, due to the versatility of isocyanide to react as a nucleophile 

and electrophile at the same carbon [5]. Ugi reaction is one of the well-known IMCRs [6]. 

however several variations have been reported, for example, Ugi-Azide, where carboxylic 

acid is replaced with hydrazoic acid. This reaction is the method of choice for 1,5-disub-

stituted tetrazole synthesis [7]. 

Tetrazoles are heterocyclic compounds formed by 4 nitrogen atoms with potential 

applications in medicine, agriculture, chemistry, and pharmacology, among others [8]. In 

medicinal chemistry, two types of tetrazoles are highlighted: 5-substituted-tetrazole and 

1,5-disubstituted tetrazole, the latter being considered as a biosiostere of amide bond. This 

property is associated with bond angles and lengths, and it is beneficial as it improves the 

metabolic resistance to peptidases [9]. 

On the other hand, 1,2,3-triazoles are 5-membered heterocycles with 3 nitrogen at-

oms. In recent years, they have attracted interest from several fields due to their antineo-

plastic, antibacterial, antifungal, antiviral, and antiparasitic potential [10]. From the me-

dicinal chemistry point of view, 1,4 and 1,5-disubstituted-1,2,3-triazoles are capable of 
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mimicking trans and cis amide bonds, respectively, which provides a high metabolic re-

sistance [11]. 

Bis-heterocycles are hybrid molecular systems where two heterocycles are present 

[12]. Their connectivity can be either linked, spaced, bound, fused, or merged [13]. Among 

the plethora of this kind of compounds, those which incorporate nitrogen heterocycles are 

highlighted, because around 59% of the FDA-approved drugs until 2014 contained at least 

one nitrogen heterocycle [14]. 

The incorporation of a heterocycle as part of the components in an IMCRs process 

such as the Ugi-Azide reaction is an important alternative to the construction of bis-heter-

ocycles with linked connectivity, like 1,5-disubstituted-tetrazole-1,5-disubstituted-tria-

zole. 

(A). Closer work by Sharisa, A. et. al. (2013) [15]. 

 
(B). This work 

 

2. Results and Discussion 

The present work, it is presented the synthesis of a small library of bis-heterocycles 

containing the 1,5-disubstituted 1,2,3-triazole and 1,5-disubstituted tetrazole moieties via 

the Ugi-Azide reaction. For the reaction optimization, 5-phenyl-2H-1,2,3-triazole-4-carbal-

dehyde (6) trimethylsilylazide (7), benzylamine (8a) and tert-butyl isocyanide (9a) were 

chosen as components, to synthesize bis-heterocycle 10a. In Table 1, the optimization ex-

periments are described. 

Table 1. Screening conditions for the synthesis of target molecule 16a. 

 
Entry Solvent Time Yield 

1 EtOH 24 h 59% 

2 H2O 48 h NR 

3 - 48 h NR 

In the first experiment, ethanol was used as a solvent for the Ugi Azide reaction for 

24 h, at room temperature, obtaining a moderate yield of 59%. Further optimization of the 

reaction was attempted by using water as a solvent, and with a solvent-free experiment, 

however, neither of the two reactions proceeded, as the starting materials were recovered. 
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Taking the experiment with ethanol as the optimized condition, the reaction scope was 

evaluated, varying the amine and isocyanide components. 

 

Figure 1. Substrate scope. 

3. Conclusions 

The incorporation of a nitrogen heterocycle in one of the components in an IMCR is 

an efficient strategy for the functionalization of heterocycles. It is highlighted that the tar-

get molecules incorporate bis-heterocycles in their structure. The developed strategy is the 

first report on the use of 5-phenyl-2H-1,2,3-triazole-4-carbaldehyde as a component in the 

Ugi-Azide reaction. The developed procedure has advantages such as being carried out 

under mild and environmentally friendly reaction conditions, using a green solvent. 

4. Experimental Section 

4.1. General information, Chemicals, and Instrumentation 

Bruker Avance III spectrometers (500 and 125 MHz, respectively) were used for acquisi-

tion of 1H and 13C NMR spectra. Deuterated chloroform (CDCl3) was used as the solvent for NMR 

experiments. Chemical shifts (δ) are given in ppm relative to tetramethylsilane (TMS). 

Coupling constants are reported in Hertz (Hz). Multiplicities of the signals are described 

using standard abbreviations: singlet (s), doublet (d), triplet (t), quartet (q), and multiplet 

(m). NMR spectra were analyzed using MestReNova software version 12.0.0-20080. Reac-

tion progress was monitored by thin-layer chromatography (TLC) on pre-coated silica gel 

F254 aluminum sheets. The spots were visualized under UV light at 254 nm. Column chro-

matography was performed using silica gel (230–400 mesh) as a stationary phase. Mix-

tures of hexanes and ethyl acetate were used as mobile phases for column chromatog-

raphy and in TLC for reaction progress monitoring. All reagents were purchased from 

Sigma Aldrich and were used without further purification. Chemical names and drawings 

were obtained using the ChemDraw 22.2.0.3300 software package. 

4.2. General Procedure 

In a sealed vial, 5-phenyl-2H-1,2,3-triazole-4-carbaldehyde (6, 1.0 equiv.), trimethylsi-

lylazide (7, 1.0 equiv.), amine (8a-b, 1.0 equiv.) and isocyanide (9a-c, 1.0 equiv.) were dis-

solved in EtOH (0.5 M) and stirred for 24 h at room temperature. The solvent was evapo-

rated under reduced pressure and the product was purified by flash chromatography us-

ing mixtures of ethylacetate in hexanes as mobile phase and silica gel as stationary phase 

to obtain the corresponding bis-heterocycles 10a-e. 
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4.3. Spectral Data 

 

N-benzyl-1-(1-(tert-butyl)-1H-tetrazol-5-yl)-1-(5-phenyl-2H-1,2,3-triazol-4-yl)-

methanamine (10a): Yellow solid; 1H (500 MHz, CDCl3) δ 7.58 (m, 2H), 7.35 (m, 3H), 7.27 

(m, 3H), 7.21 (m, 3H), 5.53 (s, 1H), 3.86 (d, J = 12.7 Hz, 1H), 3.75 (d, J = 12.7 Hz, 1H), 1.44 

(s, 9H).; 13C NMR (125 MHz, CDCl3) δ 154.55, 144.12, 141.20, 138.30, 129.62, 129.91, 128.85, 

128.80, 128.43, 128.01, 127.55, 61.98, 51.63, 49.33, 29.60. 

 

N-benzyl-1-(1-(4-methoxyphenyl)-1H-tetrazol-5-yl)-1-(5-phenyl-2H-1,2,3-triazol-4-

yl)-methanamine (10b). Yellow solid: 1H NMR (400 MHz, CDCl3, 25 °C, TMS): δ 7.22 (m, 

7H), 7.09 (m, 3H), 6.97 (d, J = 6.9 Hz, 2H), 6.69 (d, J = 6.9 Hz, 2H), 5.34 (s, 1H), 3.79 (d, J = 

4.8 Hz, 2H), 3.77 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 160.83, 155.23, 138.10, 129.12, 

128.75, 128.66, 128.57, 128.44, 127.78, 127.41, 126.28, 125.56, 114.60, 55.55, 51.23, 47.02.  

 

1-(1-(tert-butyl)-1H-tetrazol-5-yl)-N-(furan-2-yl-methyl)-1-(5-phenyl-2H-1,2,3-tria-

zol-4-yl)-methanamine (10c): brown solid; 1H NMR (400 MHz, CD3OD) 7.65 (m, 2H), 7.50 

(m, 1H), 7.44 (m, 3H), 6.37 (m, 1H), 6.19 (d, J = 3.1 Hz, 1H), 5.61 (s, 1H), 3.98 (d, J = 14.3 Hz, 

1H), 3.83 (d, J = 14.4 Hz, 1H), 1.38 (s, 9H); 13C NMR (100 MHz, CD3OD) δ 155.76, 153.74, 

143.87, 130.13, 130.01, 129.03, 111.46, 109.78, 63.36, 50.20, 44.27, 29.69. 

 

1-(1-cyclohexyl-1H-tetrazol-5-yl)-N-(furan-2-yl-methyl)-1-(5-phenyl-2H-1,2,3-tria-

zol-4-yl)-methanamine (10d): colorless oil: 1H NMR (400 MHz, CD3OD) 7.65 (m, 2H), 7.50 

(m, 1H), 7.44 (m, 3H), 6.37 (m, 1H), 6.19 (d, J = 3.1 Hz, 1H), 5.61 (s, 1H), 3.98 (d, J = 14.3 Hz, 

1H), 3.83 (d, J = 14.4 Hz, 1H), 1.38 (s, 9H); 13C NMR (100 MHz, CD3OD) δ 155.76, 153.74, 

143.87, 130.13, 130.01, 129.03, 111.46, 109.78, 63.36, 50.20, 44.27, 29.69. 
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N-(furan-2-yl-methyl)-1-(1-(4-methoxyphenyl)-1H-tetrazol-5-il)-1-(5-phenyl-2H-

1,2,3-triazol-4-yl)-methanamine (10e): Colorless oil: 1H NMR (500 MHz, CD3OD) 7.33 (m, 

1H), 7.26 (t, J = 7.2 Hz, 1H), 7.21 (t, J = 7.4 Hz, 2H), 7.12 (d, J = 7.3 Hz, 2H), 6.85 (d, J = 8.9 

Hz, 1H), 6.67 (d, J = 8.9 Hz, 1H), 6.22 (m, 1H), 6.01 (d, J = 2.8 Hz, 1H), 5.29 (s, 1H), 3.86 (d, 

J = 14.6 Hz, 1H), 3.82 (d, J = 14.5 Hz, 1H), 3.68 (s, 3H); 13C NMR (125 MHz, CD3OD) δ 161.18, 

155.39, 152.12, 142.43, 128.47, 127.49, 126.26, 125.35, 114.34, 109.98, 108.27, 54.72, 46.78, 

42.76. 
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