

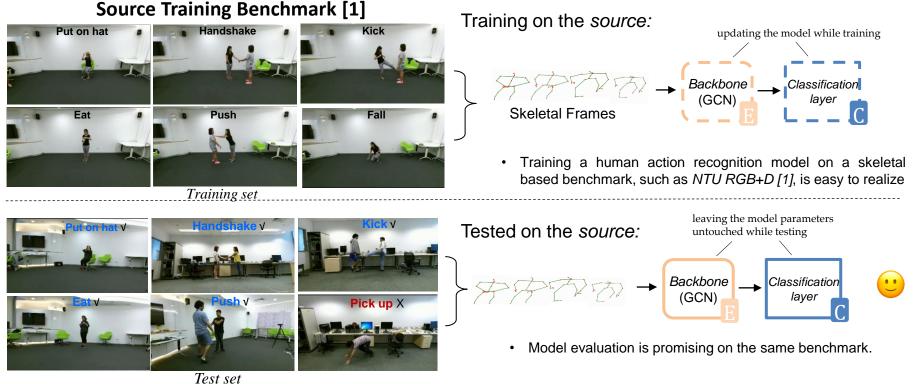
Semi-Supervised Adaptation for Skeletal Data Based Human Action Recognition[†]

Haitao Tian^{1*}, Pierre Payeur¹

School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada

[†] Presented at 10th International Electronic Conference on Sensors and Applications

* Correspondence: Haitao Tian, htian026@uottawa.ca



Test set

Tested on the *target:*

• The trained model fails on inference in the target test environment due to data domain shift in imaging configurations (e.g., variations in camera views, heights, and orientations)

[1] Shahroudy, A., Jun L., Tian-Tsong N., Gang W. "Ntu rgb+ d: A large scale dataset for 3d human activity analysis." In CVPR. 2016.

Solutions to a learn capable human action recognition model adaptive to a target environment ?

- **Supervised learning** conducts extra fine-tuning rounds with full supervision of the data collected under the target imaging configuration. However, the collection and annotation of a large volume of skeleton data for fine-tuning is extremely time-consuming and troublesome, and it could even be prone to subjectivity while in-volving different subjects performing the same actions.
- Semi-supervised learning pretrains a model from the benchmark data set, then fine-tunes the pretrained model on a small number of labeled data samples in the target domain.

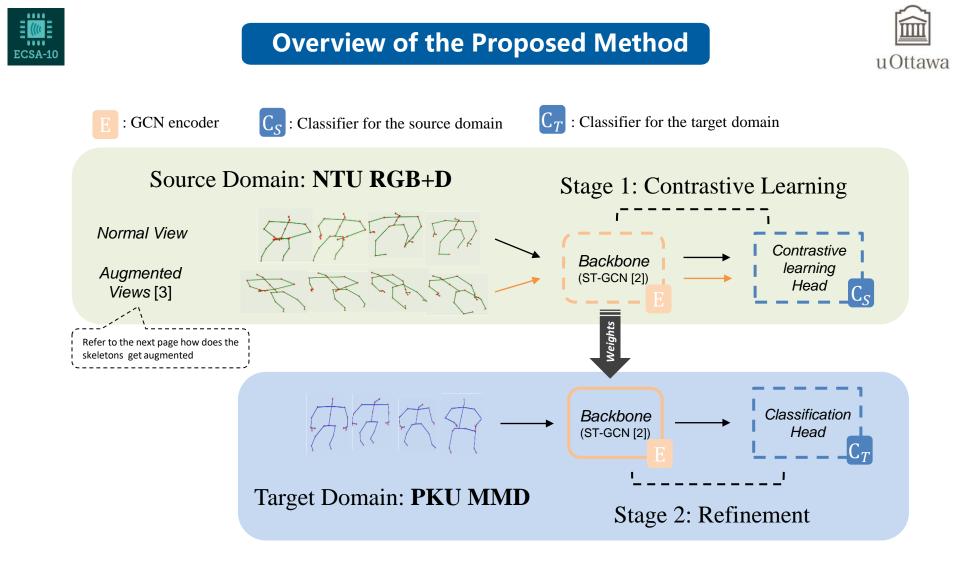
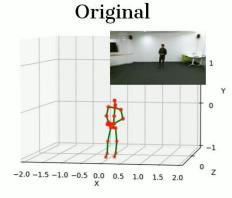
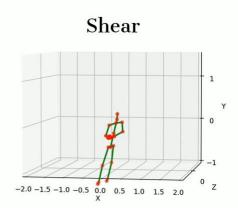


Figure 1. Framework of the proposed semi-supervised adaptation strategy. In the first stage, the training data (unlabeled) from the source domain is utilized to contrastive learning after data augmentation. The learned backbone is recycled in stage 2 for refining over the data samples (labeled) in the target domain.

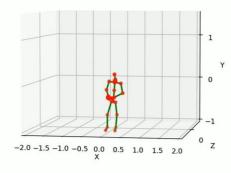
• The Extremely Augmented Skeleton (EAS) scheme [3] enriches the input space in both spatial and temporal dimensions



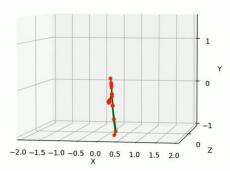


 \checkmark It is a video demo

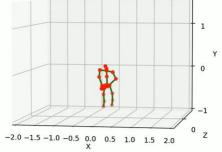
Gaussian Noise



Random Axis Mask



Random Rotate



Time Flip

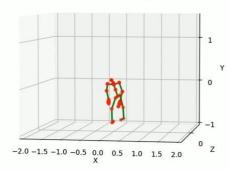


Table 1. Comparative performance of the proposed method against full supervised training.

Model	On benchmark (NTU RGB+D) On target domain (PKU-MMD)		
Source only	69.07 %	57.32 %	
Adaptation	34.41%	75.74%	

Table 2. Performance gains related to different proportions of the target data samples for C_T refinement training.

Percentage of data use	5%	20%	30%	50%	70%	100%
Accuracy	71.60%	77.33%	81.03%	82.25%	83.28%	85.06 %

Table 3. Performance of Fully supervised learning vs. Semi-supervised learning.

	Full S	Semi-supervision		
	NTU RGB+D & 10%	NTU RGB+D & 10% PKU-	NTU RGB+D & 10% PKU-	
	PKU-MMD (fine tuning)_	MMD (combined)	MMD (fine-tuning)	
Accuracy	45.97%	62.61%	75.74%	

T-SNE Visualization

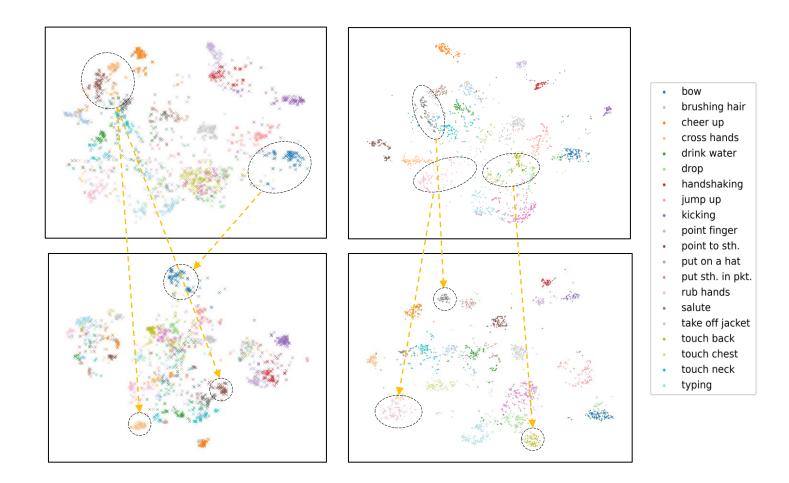


Figure 2. T-SNE visualization on action clusters on the embedding space of ST-GCN (upper row: "Source only"; bottom row: "Adaptation"). Clusters are distinguished by colors where twenty actions are randomly selected among fifty actions for clarity. Left column represents action clusters of the source domain (NTU RGB+D) and right column shows clusters of the target domain (PKU-MMD), respectively.

This work proposes a simple but efficient method to deploy a skeleton data based human action recognition model to a target environment while requiring only a small amount of labeled data from the latter.

- The proposed semi-supervised learning strategy utilizes contrastive learning to pretrain a model that learns key skeletal representations from an unlabeled dataset, then fine-tunes the pretrained model on a small number of labeled data samples in the target domain.
- Experiments are conducted to demonstrate the effectiveness of the proposed strategy. It suggests that the semi-supervised learning method achieves convincing results compared to fully supervised learning that requires voluminous labeled data from both the source and target domains.
- The research also experimentally characterizes a trade-off between data usage and model performance, providing reference to develop and deploy future applications.