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Abstract: Green Ports has emerged due to the increase of air pollution from emissions generated by 
maritime traffic and the dispersion of particles, as well as water pollution from spills. The primary 
objective of this study is to anticipate episodes of atmospheric pollution related to cargo handling 
activities and assess the quantitative causality between these variables. We employ causality infer-
ence based on time series analysis to investigate the applicability and validity of these techniques in 
a real-world problem se ing. Specifically, methods such as the Granger Test and PCMCI are evalu-
ated and compared with this data. The results demonstrate that cargo handling at the port under 
study has some causal influence on the PM (particulate ma er) measurements. Finally, the PCMCI 
method is proposed as the most robust among the algorithms considered in this study. 
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1. Introduction 
The growth of commercial activities and the need for competitiveness in the global 

market are forcing ports around the world to evaluate all possibilities systematically and 
continuously for optimization and reduction of related costs and externalities. Among the 
main adverse effects between port activity and the environment, air pollution (due to 
emissions from maritime traffic or the dispersion of particles) and water pollution (spills) 
stand out. 

Atmospheric pollutants are emi ed from ports through various sources, both directly 
and indirectly associated with port activities. The coexistence of multiple transportation 
modes, including vessels, bulk cargo, handling equipment, and rail locomotives, collec-
tively contributes to emissions of particulate ma er (PM) and greenhouse gases linked to 
maritime operations [1].  

These problems have led to the emergence of a new port paradigm: the Green Port, 
in which sustainability (in its three aspects: social, economic and environmental) is the 
central pillar. The Green Port concept introduces these three aspects in the development 
and operation of ports, in order to find a balance between them, resulting in ports that are 
competitive and integrated with both the city that hosts them and the environment [2]. 

This text describes the implementation of a study aimed at predicting when an epi-
sode of airborne particle pollution may occur due to port activities related to the loading 
and unloading of bulk cargo. To achieve this, two different methodologies are employed: 
firstly, a simpler method like the Granger test, and secondly, a more sophisticated method 
like PCMCI. These studies are applied to real data obtained from bulk cargo activities in 
four specific areas of the Castellò Port along with data on pollutants collected from five 
different stations located within the port. 
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2. Materials and Methods  
2.1. Study Site, Castellò Port 

The present study focuses on five air quality monitoring stations in the Castellò Port 
(Tramontana, Gregal, Levante, Poniente and Siroco) and four docks in colour (CS06 in red, 
CS26 in yellow, CS05 in green and CS09 in blue). These zones are reflected in the figure 
below.  

 
Figure 1. Study site located at Castellò Port (Castellón, Spain). 

2.2. Data Understanding 
Data were acquired by Port Authority of Castellò (PAC). As the raw data are very 

heterogeneous, considerable work has been done to transform them into versions suitable 
for further processing. As the useful port operations data only covered the years 2020 and 
2021, these two years were chosen for both datasets, comprising air quality parameters 
and port operations.  

2.2.1. Air Quality 
Since not all the stations have the same sensors and therefore do not measure the 

same variables, the parameters that are common to all have been selected. Regarding the 
pre-processing of the data, only one data in the time series of the maximum wind speed 
for the year 2021 at the Poniente station was replaced by the average value of the imme-
diate neighbours, as it was clearly an outlier. Therefore, we can say that these time series 
are clearly very good in terms of data quality. 

Finally, the final air quality data consists of 5 multidimensional time series, each as-
sociated with a monitoring station and where the dimensions correspond to the following 
variables for 2020 and 2021: PM2.5  [µg/m3], PM10  [µg/m3], wind direction [º], hourly 
mean wind speed [m/s] and maximum hourly wind speed [m/s]. 

Given the inherent cleanliness of these time series, it was not considered necessary to 
perform any pre-processing beyond reforma ing the data or grouping them in a more 
convenient way for the study. 

2.2.2. Port Operations 
The port operations data required much more pre-processing than the air quality 

data. The data itself did not consist of a time series as such, but of a series of records of 
ship arrivals and departures at the docks, where the following parameters were 
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monitored: tonnes unloaded, dock, type of goods, vessel, hands, date of arrival and de-
parture, among others. The period covered is from 2019 to 2021, with data received with 
a time resolution of 6 h. 

2.3. Causal Analysis Techniques  
Inferring causality is a remarkably important problem because, unlike descriptive 

statistical analysis, it allows decisions to be made in a rational and justified way. However, 
there is no universal definition of causality, although several a empts have been made [3]. 
The first quantitative notion of causality came from N. Wiener in 1956, in the context of 
the study of temporal signals. Later, Clive W. J. Granger implemented and popularised 
this formulation (called Granger causality in his honour), which even won him the Nobel 
Prize in Economics in 2003 and it is the first family of methods to be studied in this paper 
(Section 2.2.1). However, it is a method that, as will be seen below, is limited to linear 
relationships between time series. It did not take long, therefore, for a large number of 
generalisations (and other approaches) of the same method to appear, taking into account 
non-linearity, both from the point of view of econometrics and from that of physics and 
non-linear dynamical systems [4]. On the other hand, concepts from information theory, 
first introduced by Schreiber in terms of transfer entropy [5], have been used to infer cau-
sality, notably in the work of Palus [6], such as conditional mutual information. In addi-
tion, other types of causality and inference methods have appeared; one can read about 
current causality techniques in [7,8]. The methods selected for investigation in this paper 
draw on several of these concepts. In particular, following an overview of different meth-
ods, this paper presents two methods that correspond to two different but related ap-
proaches, which are described in detail in the following sections. 

2.3.1. Granger Causality 
Granger’s method assesses causality in that the addition of a variable as a component 

of the predictive model, the target variable, increases the predictive power of the model. 
Intuitively, this means that, in Granger’s sense, a process X causes a process Y if predic-
tions about future values of Y are more accurate when information from X’s past is con-
sidered. More specifically, we want to test the null hypothesis that the process “X does not 
(Granger) cause Y”. To this end, both VAR(T) (Vector Auto Regressive) model with and 
without the functional dependence of X are considered (1-2): 

푦 = α + ϕ 푦 + 휓 푥 + ϵ  (1)

where α , ϕ  y 휓  are the coefficients of the model and ϵ is a component characterising 
the signal noise, while T is the order of the model, i.e., the maximum time delay consid-
ered. In this model, the process X is assumed to influence Y if the coefficients 휓  are not 
null. 

푦 = α + β 푦 + 푢  (2)

where the coefficients of the model are the same as in the previous case. 
Thus, the following (null) hypotheses are to be tested: 

퐻 :  휓 , … , 휓 = 0 (2)

in comparison with the alternative scenarios: 
퐻 :  휓 ≠ 0 푖 ∈ {1,2, … , 푝} 

(2)
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Then, after adjusting the coefficients (e.g., by least squares) of both models, a statisti-
cal test of significance, such as Fisher’s F-test, is applied (it compares the variance of the 
residuals of the model including only Y with that of the model including both X and Y): 

퐹 =
(RSSr − RSSu)/푞

RSSu/(푇 − 3푝 − 1) (2)

where RSSr  y RSSu  are the sum of the squared residuals of the restricted and unre-
stricted model respectively (Equations (1) and (2)), q is the number of null coefficients and 
p is the number of observations. Thus, depending on the value of F, the null hyphotesis 
퐻  can be rejected (or not) and X can be considered to cause Y (or not) in the Granger 
sense. 

Before applying the Granger test, it is necessary to check that the stationarity condi-
tion of the time series in question is satisfied, in order to construct time series models that 
assume this property. To do this, Augmented Dickey-Fuller (ADF) and Kwiatkows-ki-
Phillips-Schmidt-Shin (KPSS) tests are evaluated.  

2.3.2. PCMCI 
This method of causal inference between time series, proposed by Runge in [8], is 

based on the concept of conditional independence to estimate the strength and direction-
ality of causal relationships between highly interdependent multivariate time series. 
Comes from PC (Park and Clark) and MCI (Momentary Conditional Independence) meth-
ods. Let us consider a dynamic system 푿 = (푋 , … , 푋 ) (therefore, multivariable, where 
the index t indicates the time instant and the upper index 푁 distinguishes the different 
variables that compose it) in which the following is true:  

푋 = 푓 풫 푋 , η  (2)

where 푓  is a possible nonlinear functional dependence, η  is a mutually independent 
Dynamic, noise, and 풫 푋 ⊂ 푿 = (푿 , 푿 , … ) denotes the “causal parents” of the 
variable 푋  in the entire history of the 푁 variables; thus, a causal link 푋 ⟶ 푋  exists 
if 푋 ∈ 풫 푋 , where τ is a time delay. The PCMCI algorithm then a empts to find the 
causal parent of different time series with different time lags (τ). For this purpose, and as 
already indicated, this method presents two different stages [8]: 

1. Identification of some relevant initial relatedness conditions 풫 푋  for all time series 
푋  by means of a PC algorithm (Markov descovery type). Afert this step, an aproxi-
mation of the true parent distribution 풫 is obtained, possibly including false posi-
tives. 

2. Refinement of the identification of 풫 (control of false positives) by means of a Mo-
mentary Conditional Indepence MCI analysis. 

3. Results  
The results can be seen in Figures 2 and 3, where they have been classified according 

to the operating dock. Gregal, Poniente and Siroco stations are chosen among all the sta-
tions due to compare purposes between them, being the ones more relevant.  

3.1. Granger 
In particular, the docks are identified by their initials (G: Gregal; P: Poniente; S: Si-

roco) in the rows, and the causal relationships from the variables indicated in the legend 
to the PM2.5 and PM10 variables (in the columns) are shown. Recall that the Granger test 
indicates causality in cases where the p-value is less than 0.05. 

For both docks, the p-value curves as a function of delay time τ have a decreasing 
shape, with few instances of causality for delays of 1 h. Wind speed at Siroco stands out 
as the variable that, on average, has the least causal effect (in the Granger sense) on the 
others. Similarly, the variables of tones discharged per hour show mixed results, with 
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slightly more causal relationships towards the PM10 variable than towards the PM2.5var-
iable. 

 
Figure 2. Granger causality between the variables of average speed and tons per hour discharged at 
the 4 docks (by colors, indicated in the legend, and the variables of granulated material in suspen-
sion PM10 y PM2.5). 

 
Figure 3. p-values according to the PCMCI algorithm for the different cause and effect variables. The 
statistical significance value of 0.05 is indicated by the dashed line. 

In Figure 2, In short, there are many causal relationships that can be complex to iden-
tify among so many variables. In addition, the high number of causal detections is remark-
able, even though there are some monitoring stations (Gregal) that show practically no 
causality for the tonnes of bulk discharged. A priori, the parameter that is most causally 
influenced by bulk discharge is PM10 (P), followed by PM10 (S). 

3.2. PCMCI 
Following the same methodology as in the previous cases, it was applied to all pos-

sible pairs of cause and target variables defined above, for a maximum time lag of 12 h. P-
values below a statistical significance level of 0.05 are considered to indicate a causal rela-
tionship. 
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4. Conclusions 
When investigating causality in relation to air quality in port areas, they can influence 

the concentration of particulate ma er and thus the quality of the surrounding air. Two 
common approaches to address this relationship are Granger analysis and the use of the 
Multivariate Principal Component Method (PCMCI). Regarding the causal inference al-
gorithms, a considerable variability of results is found among all the methods. According 
to the Granger method, wind has a causal strength on the PM variables (in general, 
stronger relationships seem to be observed for the same station where it is measured). 
Similarly, the bulk series of the CS06, CS05 and CS09 docks stand out as influencing the 
PM measurements, especially at the Siroco and Poniente stations.  

According to the PCMCI algorithm, which is in principle more robust than the others, 
the bulk discharges of CS05 and CS09 stand out as the most important variables causing 
the PM dynamics at the Poniente and Gregal stations (for PM2.5), respectively. However, 
these are not the closest stations to each of these terminals, which could be related to the 
prevailing winds. 

On the other hand, data collection in ports could lead to issues related Big Data in 
terms of volume data, variety data and velocity of data acquisition. The solutions pro-
posed in the paper (Granger and PCMCI) can address Big Data issues to some extent, but 
their capabilities may vary, depending on the type of the analyses. 

In conclusion, the choice between Granger and PCMCI for the causality analysis of 
air quality in ports such as Castellò Port depends on the complexity of the relationships 
to be investigated. PCMCI offers a significant advantage in allowing the detection of 
causal relationships beyond linear ones, which may lead to a complete understanding. 
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