

UPLS

<u>Mireia Toledano-Pinedo^{1,*}, Teresa Martínez del Campo², Hikaru Yanai³ and Pedro Almendros¹</u>

¹Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006-Madrid, Spain.
²Grupo de Lactamas y Heterociclos Bioactivos, Unidad Asociada al CSIC, Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.

³School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.

INTRODUCTION

In the last decades, allenes have experienced great growth in the field of organic synthesis due to their interesting reactivity that allows a great variety of possible transformations. Recently, our research group has described that the reaction of metal-free allenols with the Yanai reagent selectively produces bis(triflyl)enones through the electrophilic attack of $Tf_2C=CH_2$ on the terminal sp²-hybridized C4 atom of the allene rest [1].

Due to the interest of our working group in the study of allenes and the Yanai reagent, which serves as a source of highly electrophilic $Tf_2C=CH_2$, we propose as the main objective of the work the study of the reactivity of α -allenols against Yanai salt, in the presence of a gold catalyst with the assumption of a cycloetherification [2].

RESULTS

OH

By using [(PPh₃)AuCI]/AgOTf as a catalyst and carried out the reaction at room temperature, a separable mixture of the aldehyde **4a** together with the ketone **5** was obtained.

Study of the scope of the methodology

Optimization of reaction conditions

Entry 1	1a	2 (1.1 equiv.)	[(PPh ₃)AuCl]/AgOTf, DCE, rt, 2 h	4a (30%)
Entry 2	1a	2 (1.1 equiv.)	[(PPh ₃)AuCl]/AgOTf, MS 3 Å, DCE, rt, 2 h	4a (41%)
Entry 3	1a	2 (1.1 equiv.)	[(PPh ₃)AuCl]/AgOTf, DCE, 130 ^o C, 30 min	4a (61%)
Entry 4	1a	2 (1.1 equiv.)	[(PPh ₃)AuCl]/AgOTf, C ₆ H _{12,} 130 °C, 30 min	4a (6%)
Entry 5	1a	2 (1.1 equiv.)	[(PPh ₃)AuCl]/AgOTf, HFIP, 130 ^o C, 30 min	4a (0%)
Entry6	1a	2 (2.0 equiv.)	[(PPh ₃)AuCl]/AgOTf, DCE, 130 ^o C, 30 min	4a (60%)
Entry 7	1a	2 (1.1 equiv.)	[(PPh ₃)AuCl]/AgSbF ₆ , DCE, 130 ^o C, 30 min	4a (55%)
Entry 8	1a	2 (1.1 equiv.)	A /AgOTf, DCE, 130 ^o C, 30 min	4a (68%)
Entry 9	1a	2 (1.1 equiv.)	A /AgSbF ₆ , DCE, 130 ^o C, 30 min	4a (74%)
Entry 10	1a	2 (1.1 equiv.)	B /AgOTf, DCE, 130 ^o C, 30 min	4a (56%)
Entry 11	1a	2 (1.1 equiv.)	B /AgSbF ₆ , DCE, 130 ^o C, 30 min	4a (62%)
Entry 12	1a	2 (1.1 equiv.)	C /AgOTf, DCE, 130 °C, 30 min	4a (45%)
Entry 13	1a	2 (1.1 equiv.)	C /AgSbF ₆ , DCE, 130 ^o C, 30 min	4a (40%)

Catalytic Cycle for the formation of 4

CONCLUSIONS

The reactivity of α -allenols against the highly polarized molecule Tf₂C=CH₂, generated in situ from a Koshar-type zwitterion, has been studied. The novel transformation was carried out through a basic π -type catalysis based on a cationic gold complex, which led to the synthesis of different bis(triflil)enals [3].

REFERENCES

Ο

- <u>1</u>

[1] C. Lázaro-Milla, J. Macicior, H. Yanai, P. Almendros, Chem. Eur. J. 2020, 26, 8983.

[2] a) Alcaide, B.; Almendros, P.; Martínez del Campo, T.; Fernández, I. Chem. Commun. 2011, 47, 9054. b) Alcaide, B.; Almendros, P.; Aparicio, B.; Lázaro-Milla, C.; Luna, A.; Faza, O. N. Adv. Synth. Catal. 2017, 359, 2789.

[3] Toledano-Pinedo, M; Martínez del Campo, T; Yanai, H.; Almendros, P. ACS Catal. 2022, 12, 11675.