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Abstract: The AQUASENSE project is a multi-site Innovative Training Network (ITN) that focuses
on water and food quality monitoring by using Internet of Things (IoT) technologies. This pa-
per presents the communication system suitable for supporting the pollution scenarios examined
in the AQUASENSE project. The proposed system has been designed and developed in the Si-
muLTE/OMNeT++ simulation for simulating an LTE network infrastructure connecting the Wireless
Sensors Network (WSN) with a remote server, where data are collected. In this frame two network
topologies are studied: Scenario A, a single-hop (one-tier) network, which represents a multi-cell net-
work where multiple sensors are associated with different base stations, sending water measurements
to the remote server through them, and Scenario B, a two-tier network, which is again a multi-cell
network, but this time multiple sensors are associated to local aggregators, which first collect and
aggregate the measurements and then send them to the remote server through the LTE base stations.
For these topologies, from the network perspective, delay and goodput parameters are studied as
representative performance indices in two conditions: (i) periodic monitoring, where the data are
transmitted to the server at larger intervals (every 1 or 2 s), and (ii) alarm monitoring, where the data
are transmitted more often (every 0.5 or 1 s); and by varying the number of sensors to demonstrate
the scalability of the different approaches.

Keywords: Wireless Sensor Network; water quality monitoring; simulation

1. Introduction

Water is considered one of the scarcest natural resources on our planet [1]. It directly
impacts our lives as it is vital to humankind, animals, and plants [2]. Thus, the alteration of
water quality caused by e.g., industrial waste or climatic changes is a significant concern. Its
quality might be a source of life or death [3]. Promptly detecting the pollution and locating
its source is vital in environmental protection. Considering the multiple advantages offered
by the technology, Wireless Sensor Network (WSN) is adopted in pollution monitoring
works. WSNs are suitable for monitoring the physical and chemical characteristics of the
water from remote [4–7]. In this paper, we describe our contribution to the AQUASENSE
project in designing and assessing the performance of a WSN-based end-to-end system for
water quality monitoring through computer simulations.

In such a context, a simulation framework built in SimuLTE/INET/OMNeT++ [8–10]
has been developed tailored to two scenarios to evaluate the performance of a remote
pollution monitoring service through a 4G/LTE-enabled WSN. The first scenario builds
on multi-cell network architecture, in which multiple sensors are associated with different
LTE base stations (eNBs) and transmit their water quality measurements directly to the
remote server. The second scenario still builds on multi-cell network architecture. Still,
multiple sensors are associated with local aggregators and communicate using short-range
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technology (e.g., Wi-Fi or ZigBee). The aggregators coordinate their local network of
sensors, collect and aggregate their water measurements, and transmit them to the remote
server through LTE base stations (eNBs), with which every aggregator is associated. For the
above scenarios, we provide valuable performance results regarding the network’s Quality
of Service (QoS) under different conditions.

2. Previous Work

Our main goal was to design a good quality model that evaluates our project best. Ac-
cordingly, following the indications of the most referenced network architectures reviewed
by Farmanullah Jan et al. ([11] and the references therein), who provided an in-depth
literature review on Water Quality Monitoring Systems based on Internet-of-Things (IoT-
WQMS), in [12], we already developed a performance comparison of the most suitable
communication technologies.

In such previous work, with the help of the WinProp software simulation frame-
work [13], we compared the performance of three long-range communications technologies
to support an IoT-based network reporting data from the sensing devices spread along
rivers of the Abruzzo region in Italy to a remote central station, where they are collected and
analyzed. More in detail, we jointly assessed the radio signal coverage and the maximum
achievable data rate for (i) 4G/LTE, (ii) NB-IoT, and (iii) LoRa communications technologies.
In particular, the transmitting antennas’ were placed at different heights above the ground
or the river’s water level.

Our results demonstrated that 4G/LTE outperforms the other two technologies since
it achieves the highest throughput and allows adding value services, such as video surveil-
lance over simple data chunks reporting. Nevertheless, 4G/LTE is limited in coverage: the
best performances are achieved near the base stations, i.e., in urban/suburban areas, while
the rural regions need more radio signal quality. On the contrary, the LoRa and NB-IoT
technologies achieve outstanding connectivity for large regions far from the base stations.
However, this performance is paid with a reduced capacity of the medium to support the
mentioned added value service.

Considering all the above, we believe in this paper that the most exciting scenarios to
study are identifying pollutants in urban and suburban areas, i.e., where most people live.
Accordingly, the suitable solution for our project is to focus on the 4G/LTE communication
technology [14] due to its maturity, its overall coverage, i.e., availability of base stations,
and in general its capacity in terms of guaranteeing radio connections of good quality (low
packet loss rate and latency, and generally high throughput). We then assess the system’s
performance to support different network topologies.

3. The Study
3.1. System Level Simulator

The simulator builds upon INET/SimuLTE over the OMNeT++ Discrete Event Net-
work Simulator. OMNeT++ is an extensible, modular, component-based C++ simulation
library and framework primarily developed for building network simulators.

SimuLTE is an innovative simulation tool enabling complex performance evaluation
at the system level for LTE and LTE Advanced networks in the OMNeT++ framework.
It simulates the data plane of the LTE/LTE-A Radio Access Network and Evolved Packet
Core. SimuLTE implements eNBs and User Equipment (UE) as OMNET++ compound
modules. These can be connected with other nodes (e.g., routers and applications) to
compose networks.
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Figure 1. Design mode of the NED file in the OMNeT++ environment represents a system with four
sensors and two aggregators (6 UEs) attached to an eNb each.

3.2. The Scenarios

The first scenario is a one-tier network architecture including communication between
two parties, the sensors, and the server, as is shown in Figure 2(left). The sensors are
deployed along a river; each is assigned to a base station and communicates with the server
through the LTE network. The challenges in this scenario are to measure the propagation of
a pollutant in a river and the reaction (alarm) on the server side, taking into consideration
the QoS of the network in two conditions: periodic monitoring and alarm reaction. In
systematic monitoring, each sensor sends the river’s water measurements at a specific time
interval. The server continuously checks the measurements, i.e., it compares them against
some given thresholds, and when this comparison indicates the presence of a pollutant,
it enters into the alarm condition by sending back a command to all the sensors to start
sending their data more often (i.e., lowering their sampling and sending time interval) to
track the pollutant appropriately while it flows along the water.

Figure 2. (left) Scenario A, One-Tier architecture: the sensors are connected directly to the server
through the base stations. (right) Scenario B, Two-Tier architecture. The sensors are connected to an
aggregator, and the aggregators are connected to the server through base stations.

The second scenario is a two-tier network architecture including the communica-
tion between three parties: (i) the sensors, (ii) the aggregators, and (iii) the server, as
Figure 2(right) shows. The aggregators collect all the data from the sensors transmitted
through ZigBee, aggregate them, and then send them to the server, again through LTE.



Eng. Proc. 2023, 56, 0 4 of 7

In this case, we simulate pollution through a river to investigate the server’s reaction
considering the QoS of the network, again in the two conditions as before. The difference
with the previous scenario is that when the server detects anomalies in the measurements,
it cannot reach the sensors directly; instead, it sends a message to the aggregators, which
coordinate their group of sensors to lower their sampling and transmission interval.

3.3. Pollution Simulation

The primary goal is to simulate the effect of a pollutant on the sensors’ measurements
and then its propagation along the river. In our simulation, we adopted a simple U-shape
model in which the presence of the pollutant leads to a temporary decrease in the pH
measurement of the sensor while the pollutant flows along the river. We imagine placing
and ordering the sensors toward the water flow. Accordingly, as the pollutant flows along
the river, the sensor s1 will start reporting a reduction in its pH measurements to the server
at time t = T1. At time t = T1 + ∆T, UE2 starts sensing the reduction in its measurements
too. The interval ∆T > 0 depends on the river water’s speed (assumed as constant, for
the sake of simplicity) and the distance between the sensors. To make the simulation more
realistic, we adopted a model of the pH sensor based on which the value of a sensor reading
is assumed to be affected by an error (Equation 1):

pHread = pHideal + N(0, σ) (1)

where pHread is the reading value of the WSN node which will be transmitted, pHideal is
the value generated according to our U-shape model of the pollutant, as described above,
N(0, σ) represents the error as a random value, according to a Gaussian distribution having
0 mean and standard deviation σ (e.g., σ = 0.01).

3.4. Scenarios Implementation
3.4.1. Network A: One-Tier Architecture

In this scenario, the involved entities are S sensors in the water, E eNodeB cell towers of
the LTE network, and the server. The sensors monitor the river water’s pH and periodically
sends the information to the server. In the alarm condition, when the server starts receiving
data indicating pollution from a sensor si, it notifies all the subsequent ones (sj, j =
i + 1, .., S) to begin transmitting more often for better tracking the pollutant.

3.4.2. Network B: Two-Tier Architecture

In this scenario, the S sensors in the water are organized in G groups, each coordinated
by an aggregator. The aggregators are connected to E eNodeB cell towers of the LTE
network, and the server. As before, the sensors monitor the water’s pH, then they transmit
the measurements to the aggregator. The aggregator collects the data, aggregates them into
a report containing the average, the standard deviation, and the maximum and minimum
value of such measurements, and transmits it to the server. In this scenario, the alarm
condition involves the server sending commands to aggregators to increase how often they
transmit, when an alteration in the data is detected. At the same time, the server requests
a change in the format of the aggregators’ packets from sending aggregated statistics to
sending all the (node ID, pH value)-pairs for each node that the aggregator coordinates.

3.5. Simulation Setup

The parameters for the networks A and B mainly consist of the following:

• Network A: E = 2 eNBs and S = 6 sensors. The sensors are equally distributed to the
eNBs and directly transmit packets to the server every tA

per = 1 s in the periodic and
tA
ala = 0.5 s in the alarm conditions.

• Network B: E = 2 eNBs, G = 2 aggregators and S = 6 sensors (equally distributed
between the aggregators). The sensors always transmit data to the aggregator every 1 s.
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In the periodic condition, the aggregators communicate to the server every tB
per = 2 s,

while in the alarm condition, they transmit to the server every tB
ala = 1 s.

Then, we simulated two scenarios for each network and conditions: (i) varying the
number of sensors, i.e., S = {3; 6; 10; 40; 50} each generating packets at the application
layer with a fixed size of P = 40 B, and the number of aggregators G = {1; 2; 2; 4; 5} for the
network B, respectively, and (ii) varying the packet’s size P, i.e., P = {40; 80; 120; 400; 800;
1000; 2000} bytes, with the number of sensors referred in the two networks above.

The performance indices considered in these simulations are the End-to-End (E2E) de-
lay (from the sensor to the server) and the goodput, i.e., the valuable sensor’s measurement
data that reaches the collector application on the server in the unit of time. For those two
indices, we computed their average over all the packets received by the server.

Finally, the default simulation run lasts five minutes.

4. Results

Figure 3 shows the resulting E2E delay and goodput in all the simulated cases. In
agreement with the LTE protocol and network architecture, which grants to the commu-
nicating nodes some so-called resource blocks available in a shared way, the trends we
obtained from these results confirm our expectations. Nevertheless, from this figure, a
couple of conclusions can be drawn: (i) the LTE network supports well the alarm condition
since its end-to-end delay is lower than the periodic condition for all the cases of S and P;
(ii) the network B scales much better than the network A, in particular as function of P,
where the mean E2E delay stabilizes at values less than 15 ms for the periodic condition and
around 10 ms for the alarm condition as the packet size increases above 400 B, as compared
with network A cases whose trend keep increasing; (iii) when either the number of sensors
or the packet size grow, the goodput increases with a pretty stable linear trend. The results
suggest that a WSN network where multiple nodes transmit data to a sink node that sends
only the aggregated report to the server is much more reliable and predictable regarding
LTE network performances.

Figure 3. Mean end-to-end delay and goodput. From (left) to (right): E2E delay against S; E2E delay
against P; goodput against S; goodput against P.

The figure also presents an unexpected trend in the delay for the Network A for both
periodic and alarm cases. For instance, we found a mean E2E delay of 18 ms for ten sensors
in the periodic case, but for fifty sensors, we got only 12 ms, even though the expected
network load in the second case is five times higher than in the former. The reason of this is
that while we increased the number of sensors S, we were forced to also increase E, i.e., the
number of the eNBs. Accordingly, the fewer sensors each eNB serves, the lower the E2E
delay and, consequently, the lower the network load. To make this more evident, we ran
the same experiment with ten sensors two times. The first time, with E = 2 eNBs and five
sensors each. The second time with E = 3 eNBs and 3, 3, and 4 sensors, respectively. The
results are shown in Table 1.
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Table 1. Network A: Mean E2E delay for periodic case as compared to the number of eNBs and
different distribution of sensors.

E S Mean E2E Delay [ms]

2 (5 + 5) 18.10
3 (3 + 3 + 4) 13.68

Overall, comparing the alarm results with the periodic conditions, the absolute values
show an increase of roughly 40% and 60% in the maximum E2E and goodput, respectively.
This is due to the increased traffic generated by the sensor nodes, which flows through the
LTE network. Once again, these results confirm that the LTE resources support well the
traffic generated by the AQUASENSE WSN, thus the expectations already anticipated in
our previous work [12] are met.

5. Conclusions

This paper has given an overview of the work done in the frame of the AQUASENSE
project concerning the design, development, and analysis of a communication system.
These communication systems are evaluated through computer simulations using SimuLTE
for simulating an LTE network infrastructure connecting the WSN with a remote server,
where data are collected. In this frame two network topologies are studied: (i) Network A,
which represents a multi-cell network where multiple sensors are associated with different
base stations, sending water measurements to the server, and (ii) Network B, which is again
a multi-cell network, but this time multiple sensors are associated to local aggregators,
which collect and aggregate the measurements and send them to the remote server through
LTE base stations. For these topologies, the end-to-end delay and the goodput are evaluated
as representative performance indices in two conditions: (i) periodic monitoring, where the
data are transmitted to the server at larger intervals, and (ii) alarm monitoring, where the
data are transmitted more often. The performance of the two scenarios described above
demonstrates that when we used the aggregators to collect the data from the sensors, the
network’s QoS is higher. In particular, an intelligent implementation of how the aggregators
provide the information to the server in normal and alarm conditions dramatically help
achieve efficient monitoring and accurate pollution event detection.
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