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Abstract: Cancers are prevalent worldwide, affecting a substantial amount of the global population, 

while the early and proactive diagnosis of the disease continues to be a global medical challenge. 

Endometrial cancer represents a gynecological variant which is not only difficult to diagnose but 

also produces symptoms that are not distinct or exclusive to just the cancer itself. Blood spectros-

copy has recently prevailed as a means towards a high-throughput and largely inexpensive method 

of diagnosing endometrial cancer. Using this method, and with the postprocessing of the accompa-

nying spectra alongside the use of multivariate statistics, an inference can be formed which gives an 

indication of the presence and extent of the cancer. Previous work in this area has shown that the 

prediction results for this cancer could be improved with the use of signal decomposition models 

alongside machine learning prediction machines, thus demonstrating the potential appeal of de-

composition models in the processing pipeline of the spectroscopy data. As part of this exploratory 

study, we employ for the first time the use of deep learning in the form of deep wavelet scattering, 

for the processing of acquired Fourier transform infrared (FTIR) spectra, which allows for a fully 

unsupervised decomposition and feature extraction of the resulting spectra, coupled with predic-

tion machines capable of predicting the presence of the cancer. The obtained results show that the 

use of deep learning allows for enhanced predictions of endometrial cancer, whilst allowing for a 

clinical decision support platform which carries a greater degree of autonomy and therein diagnosis 

throughput. 
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1. Introduction 

Endometrial cancer directly affects the lining of the uterus; it is one of the most diag-

nosed forms of cancer, and is also more prevalent in developing regions [1–5]. The for-

mation of the cancer first involves structural changes within the endometrium due to hor-

monal variations, where prolonged exposure to certain hormones within the endome-

trium results in different initial variants of the cancer [1–5]. Risk factors include age, hor-

monal imbalances, genetic markers, and obesity, to name a few [1–5]. 

A symptom and direct manifestation of endometrial cancer is unusual uterine bleed-

ing, some of the more frequently used diagnostic methods include endometrial biopsy 

processes, alongside transvaginal ultrasound methods [1–5]. Common treatment methods 

include: hysterectomies, vaginal brachytherapy, as well as medications depending on the 

overall stage of the cancer, followed by close monitoring of the behavior of the cancerous 

cells themselves [1–5]. 

Current means towards diagnosis of the cancer have been shown to carry undesired 

shortcomings, which has spurred the need for the exploration of other diagnosis 
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mechanisms [1–5]. More effective means of diagnosis carry both cost saving implications 

as well as reducing the need for severe interventions such as significant clinical, pharma-

cological and surgical treatments, including hysterectomies [1–5]. Recent work has shown 

the promise of the use of blood biomarkers, alongside spectroscopic measurements, as a 

high-throughput means of triage and initial diagnosis, to be followed by invasive obser-

vations in the patients [1–5]. An illustration of the endometrial cancer disease can be seen 

in Figure 1. 

 

Figure 1. Illustration of endometrial cancer [6]. 

Related work has shown further results in the investigation of this theory, for exam-

ple, Paraskevaidi et al. [7] and Nsugbe et al. [5] in the use of a combination of blood bi-

omarkers, and FTIR spectra towards the classification and recognition of different variants 

of endometrial cancer infections. Paraskevaidi et al.’s work utilized primarily multivariate 

statistics towards creating various discriminatory based models, while Nsugbe et al. uti-

lized a novel approach based around spectra decompositions and machine learning to 

assemble prediction models [5,7–9]. Nsugbe et al.’s work brought to light the potential 

clinical value of the application of multiresolution and signal decomposition algorithms 

within the area of spectroscopy postprocessing [5,8,9]. Deep wavelet scattering (DWS) 

represents a multiresolution-based approach which also allows for unsupervised feature 

extraction, and is structurally an ensemble of both the classical wavelet transform and the 

deep learning-based convolutional neural network (CNN) [10]. Recent work has seen the 

application of DWS in various capacities within clinical medicine, which has shown to be 

beneficial in not requiring any expert knowledge regarding the feature extraction aspect 

of the process, whilst also being able to perform a decomposition act [11–13]. The majority 

of this has been carried out on primarily on time-series data. In this work we investigate 

the use of DWS for the first time on the use of spectroscopic data for the prediction of 

various kinds of cancers using Paraskevaidi et al.’s FTIR spectroscopic data [7,11–13]. 

From this, it is hypothesized that a combination of the blood spectroscopy, FTIR and 

DWS, alongside pattern recognition models, can help form a rapid high-throughput 

means for an initial triage and diagnosis of endometrial cancer, which requires minimal 

expert intervention due to its unsupervised nature. 

2. Materials and Methods 

2.1. Dataset 

The FTIR data utilized in this study comprised of 242 noncancerous patients, 258 with 

type 1 endometrial cancer, and 64 with type 2 endometrial cancer; further insights on the 

patient cohort can be found in the publication by Paraskevaidi et al. [7]. The recruitment 

of the participants was done by the Manchester University NHS Foundation Trust, the 

Salford Royal Foundation Trust, and the Lancashire Teaching Hospital, with ethical 
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approval given and patient consent provided prior to the start of the study. All the biopsy 

samples were labelled by certified gynecological pathologists as either normal or a variant 

of the endometrial cancerous disease [7]. The spectra were obtained from the blood sam-

ples using the Tensor 27 FTIR spectrometer with a Helios ATR attachment containing a 

diamond ATR crystal by Bruker Optics Ltd. 

2.2. DWS 

The DWS is based around the multiscale extraction of features in an unsupervised 

fashion, in a way which they are robust and continuous, and its architecture comprises of 

a merger between the wavelet transform and the CNN [10]. In an attempt to minimize the 

overall computational complexity of the method, preset values of the filters are set, which 

null out the need for iterative estimations, and make the method adept at working with a 

small set of samples due to this multiscale properties [10]. In the DWS, the deep CNN is 

used for the iterative applications, whilst the convolution is done via wavelets and non-

linear modules, as well as an averaging function. The implementation of the DWS in this 

paper involved a Gabor mother wavelet, a scale invariance of 1 s, the filter banks of 8 

wavelets per octave in the first filter bank, as well as 1 wavelet per octave in the second 

filter bank. 

2.3. Machine Learning Models 

The discriminant analysis model, i.e., linear and quadratic (LDA and QDA), was em-

ployed, while the K-nearest neighbor was also utilized as part of this work with K selected 

as 1 [14]. Where these models have been specifically chosen largely due to their computa-

tional efficiency. All models were validated using the K-fold cross validation approach 

with K chosen 10, while the SMOTE algorithm was utilized for the purpose of class bal-

ancing. 

3. Results 

The results for the various machine learning exercises can be seen in Table 1, from 

which it can be seen that the DWS appears to be producing a better prediction accuracy, 

with the best performance of 71.6%, when compared with the prior method utilized in a 

previous publication [15]. This has thus provided a degree of statistical evidence that the 

DWS can indeed be utilized towards a combination of both spectra decomposition, whilst 

also performing unsupervised feature extraction, therein negating the need for a set of 

expert knowledge dependent feature extraction process. 

Table 1. Accuracy of the machine learning exercises. 

Model 

Postprocessing Method from 

Nsugbe and Sanusi [15] (without 

LSDL) (%) 

DWS (%) 

LDA 57 59.7 

QDA n/a 64.1 

KNN 71.3 71.6 

Subsequent work to be done in this area would involve further optimization exercises 

in order to determine if the performance of the DWS can be improved, while also training 

the data on various other machine learning models with nonlinear decision boundaries. 

The results in Table 1 appear to suggest that these kinds of models are optimal for the case 

study being investigated. 
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4. Conclusions 

Endometrial cancer is an increasingly common cancer variant which ranks as one of 

the more frequently diagnosed forms of the disease, with symptoms that typically feature 

uterine bleeding of various degrees. The use of blood spectroscopy has begun to be inves-

tigated in the literature, where FTIR spectroscopy has been used as a means towards the 

postprocessing of the blood samples acquired from the patients. 

This work has investigated the use of DWS for the first time, which is a multiresolu-

tion unsupervised feature extraction method for the design of prediction models from 

FTIR spectra. The interim results from the case study carried out in this paper show po-

tential and applicability of the approach towards the prediction of the presence of the 

endometrial cancer in patients with the disease. Further work would involve the use of a 

broader sample size of patients with the cancer, and optimization exercises to tune and 

improve the performance of the DWS, whilst also training other available machine learn-

ing models on the dataset to find a best fit model for the desired application. Furthermore, 

the exploration of unsupervised learning pattern recognition/machine learning models 

would be implemented. 
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