

5

6

7 8

19

20

21

22

Proceeding Paper

Wearable Two-Channel PPG Optical Sensor with Integrated Thermometers for Contact Measurement of Skin Temperature *

Jiří Přibil *, Anna Přibilová and Ivan Frollo

Institute of Measurement Science, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; anna.pribilova@savba.sk (A.P.); ivan.frollo@savba.sk (I.F.)

Correspondence: jiri.pribil@savba.sk; Tel.: +421-2-59104543

Presented at the 10th International Electronic Conference on Sensors and Applications, 15–30 November
 2023; Available online: https://ecsa-10.sciforum.net/.

Abstract: Many factors affect the photoplethysmography (PPG) signal quality, one of them being 11 the actual temperature of the skin surface. This paper describes the process of design, realization, 12 and testing of a special wearable PPG sensor prototype with the contact thermometer measuring 13 in detail the skin temperature in the place where the optical part of the PPG sensor touches a 14 finger/wrist. Performed experiments confirm continual increase of temperature at the place of 15 worn PPG sensors during the whole measurement influencing mainly the PPG signal range. 16 Other parameters seem to be temperature independent or influenced by other factors - blood 17 pressure, heart rate, etc. 18

Keywords: photoplethysmography optical sensor; wearable sensor; PPG wave features; contact skin temperature measurement

1. Introduction

At present, the cardiovascular magnetic resonance imaging (MRI) is an important 23 imaging technique used for investigation of the heart structure and its function. How-24 ever, in this type of a non-invasive examining device, the pulsating current in the gra-25 dient coil system generates mechanical vibration and acoustic noise [1]. Such a vibra-26 tion is often accompanied by a local heating effect which can be measured by a con-27 tactless method using a thermal imaging camera [2]. The shape of the peripheral pulse 28 wave of the photoplethysmography (PPG) signal reflects the current state of a human 29 cardiovascular system including changes in the arterial stiffness, the blood pressure 30 (BP), and the heart rate (HR) [3]. These parameters can be used for detection of the 31 stress effect [4], [5] also during examination in the MRI device working with the low 32 magnetic field [6] which is our final long term research aim. 33

The quality of the sensed PPG signals and the determined PPG wave features de-34 pend also on the actual state of the skin at the position of the optical sensor. The age 35 and gender as well as the skin color and the temperature of the skin surface can have 36 influence on the PPG signal, too. Our previous solution of wearable PPG sensors [7] 37 does not allow direct temperature measurement by any contact thermo-element during 38 the PPG signal sensing. For precise determination of PPG wave parameters, the current 39 temperature should be measured at the same time as the PPG signal is sensed. As fol-40 lows from the reactions of the tested persons we know that majority of them gradually 41 felt pressing and thermal effect on a finger (wrist) at the contact of the sensor with the 42 skin. While the time duration of the PPG signal sensing was about 1 minute, the total 43 time of wearing the optical sensor was about 15 minutes (including the initial time for 44

Citation: Přibil, J.; Přibilová, A.; Frollo, I. Wearable Two-Channel PPG Optical Sensor with Integrated Thermometers for Contact Measurement of Skin Temperature ^{2023, 5, x.} https://doi.org/10.3390/xxxxx

Published: 15 November

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2023 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). basic manipulation during sensor mounting, creation of BT connection with a control laptop, calibration, and testing of the obtained PPG signals in the real-time monitoring mode).

Motivation of the current work was to confirm or reject this subjective feeling of local warming by practical measuring experiments using a special prototype of the multi-channel wearable PPG sensor with integrated thermometers. In addition, we try to formulate a recommendation about a proper arrangement and timing of PPG signal sensing to obtain the desired PPG parameters with a sufficient accuracy. Described first-step experiments were realized in the normal laboratory conditions with planned further application for measurements inside the running low-field MRI device [7], [8].

This paper describes the process of design, realization, and testing of a special 11 prototype of a two-channel wearable PPG sensor with the contact thermometers to 12 carry out a detailed measurement of the skin temperature at the point where the optical 13 part of the PPG sensor touches a finger/wrist. Received data (PPG signal/temperature 14 values) are next processed and analyzed statistically. Obtained partial and summary 15 results for all tested persons are presented separately depending on the type of the 16 processed data using graphical as well as numerical forms. Performed measurements 17 confirm continual increase of temperature at the place of worn PPG sensors during the 18 whole measurement experiment with the main influence on the PPG signal range. 19 Other parameters seem to be temperature independent or affected by other factors – 20 BP, HR etc. 21

2. Methods

2.1. Determination of PPG wave Properties and Analysis of Temperature Value Sequences

For description of signal properties of the sensed PPG waves the energetic, tem-24 poral, and statistical parameters can be determined. Currently used methodology of 25 the PPG wave properties including the heart rate determination from the PPG wave 26 was described in more detail in [8]. The smoothing and de-trending operations must 27 be applied on the sensed raw PPG signal in the frame of pre-processing. All systolic 28 peaks *P*_{SYS} are located, their min/max levels (*Lp*_{MIN}/*Lp*_{MAX}) and the PPG signal offset 29 level (Lofs) are determined as shown in Figure 1a. The mean signal offset value μL ofs 30 is then used to calculate the relative percentage PPG signal range SRANGE as 31

$$S_{\text{RANGE}} = \left((Lp_{\text{MAX}} + Lp_{\text{MIN}})/2 - \mu L_{\text{OFS}} \right) / AD_{\text{RES}} \times 100 \, [\%], \tag{1}$$

where *AD*_{RES} is the resolution of the analog-to-digital converter used to digitize 32 the analog signal output of the PPG optical sensor. Next, the modulation (ripple) of 33 heart pulses in percentage is calculated as 34

$$HP_{\text{RIPP}} = (Lp_{\text{MAX}} - Lp_{\text{MIN}})/Lp_{\text{MAX}} \times 100 \ [\%].$$
(2)

The peak positions P_{SYS} are next applied to determine the heart cycle periods T_{CP} 35 and using the sampling frequency f_{S} [Hz] the heart rate is evaluated as 36 $HR = 60 / (T_{\text{CP}} \times f_{\text{S}})$ [min⁻¹] – see Figure 1b. The two-channel PPG parallel signal (PPG_A, 37 PPG_B waves) can be used to determine distances between P_{SYS} positions in samples 38 (ΔP_{SYS}). These values are applicable for calculation of relative percentage parameter 39 rPTT, invariant on the current HR value 40

$$rPTT = (PTT/T_{CP}) \times 100 [\%].$$
 (3)

where *PTT* represents the pulse transmission time defined as a time difference 41 between two systolic peaks measured in parallel by sensors located at a known distance [9] calculated as $PTT=\Delta P_{\text{sys}}/f_{\text{s}}$ – see Figure 1c,d. 43

To describe temperature changes during the measurement with the time duration t_{DUR} , the linear trend is calculated by least squares fitting technique of linear regression. 45 For practical use the difference ΔT between temperature value estimated at the start 46

1

2

3

and the end of measurement ($\Delta T = T_{END} - T_{START}$) is determined. Next, the gradient parameter T_{GRAD} is calculated as the ratio

$$T_{\text{GRAD}} = (\Delta T / t_{\text{DUR}}) [^{\circ}\text{C} / \text{s}], \qquad (4)$$

The positive ΔT and T_{GRAD} values show the raising temperature trend, the nega-3 tive ones represent the falling trend. During the current experiments we have obtained 4 sequences of T1, T2 temperature values measured in parallel by two thermometers. 5 From these sequences the differential parameter T12DIFF was determined from the val-6 ues at T_{END} positions. For summary comparison, the relative variability (HR_{VAR} , T_{VAR}) 7 was next calculated as a ratio between the mean μ and the standard deviation σ of an 8 input sequence X (*HR* or *T*) as $X_{VAR} = (\sigma X / \mu X) \times 100$ [%]. Thus, in the final numerical 9 comparison, the temperature parameters of T_{VAR} , ΔT , T_{GRAD} , and T_{12DIFF} were used. In 10 the case of PPG signal properties, the differential values ($\Delta HR_{VAR}, \Delta S_{RANGE}, \Delta HP_{RIPP}$, and 11 $\Delta rPTT$) separately for each PPG wave (PPG_{A,B}) were calculated. 12

Figure 1. Example of determination of temporal and pulse transmission time parameters: (**a**) 15k sample two-channel PPG signal (PPGA wave) with determined L_{PMAX} , L_{PMIN} , and L_{OFS} values together with HP_{RANGE} and heart ripple parameters, (**b**) HR values corresponding to pulse periods T_{HP} (N_{HP} = 70) and a mean HR, (**c**) visualization of P_{SYS} positions of 4092 sample parts of PPGA and PPGB waves, (**d**) determined *PTT* values with their mean value; f_s =250 Hz.

3. Objects, Experiments and Results

The developed wearable two-channel PPG sensor with two integrated thermom- 20 eters (further called "PPG-4TP") consists of: 21

- the micro-controller board Adafruit Metro Mini 328 (Adafruit 2590) by Adafruit 22 Industries, NY, USA, based on the processor ATmega328 by Atmel Company, 23 working at *f*_{CLK} = 16 MHz with eight 10-bit A/D converters, including also the hardware SPI port, the hardware I2C port and the hardware UART to USB [10]; 25
- the bi-directional communication BT module MLT-BT05 by Techonics Ltd, Shenzhen, China, working in the BT4.0 BLE standard at 2.4 GHz;
- two optical PPG sensors working in a reflectance mode with fully integrated analogue interfaces – the Crowtail-Pulse Sensor (ER-CT010712P) by Elecrow Company, Shenzhen, China (further called "OS1") and Gravity Heart Rate Sensor (SEN0203) by Zhiwei Robotics Corp., Shanghai, China (next called "OS2");
- two integrated precision I2C thermometers ("MCP1", "MCP2") based on Adafruit
 MCP9808 temperature sensors [11] by Adafruit Industries, NY, USA.
 33

All sensor components are powered via the USB port by the 5V power bank 34 THAZER (with 2200 mAh capacity). Used MCP9808 sensors enable temperature measuring in the range of -40°C to +125°C range with a typical accuracy of $\pm 0.125^{\circ}$ C [11]. 36 Each sensor includes three address pins so up to eight sensors can be connected in 37 parallel to a single I2C bus. To enable further measurements in a weak magnetic field 38

1

2

13 14

15

16

17

18

19

26

27

28

29

30

environment of the MRI device, the whole PPG sensor consists of non-ferromagnetic 1 components and all parts are fully shielded by aluminum boxes against the radiofre-2 quency disturbance. The currently realized PPG-4TP sensor prototype enables: (1) real-3 time monitoring and displaying of PPG signals picked up currently from optical PPG 4 sensors and thermometers, (2) continuous real-time two-channel PPG signal measure-5 ment with selected sampling frequency $f_s = \{125, 250, 500, and 1000 \text{ Hz}\}$ in data blocks 6 of N_{MEAS} {1k, 4k, 16k, 32k and 64k} samples. In parallel, the temperature values from 7 two MPC9808 sensors can be taken in time intervals T_{INT} = {0.2, 1, 2, 4, and 10 s}. 8

Developed PPG sensor was tested in two steps: after checking of functionality in-9 cluding the BT data transmission to the control device and verification of quality of 10 real-time two-channel PPG signals and temperature T1, T2 values from thermo-sensors 11 MCP1, MCP2, practical measuring experiments in the normal laboratory conditions 12 were realized. They consist of real-time sensing of two PPG waves and temperature 13 values from two thermometers simultaneously with parallel control measurement of 14 BP and heart rate values (HRBPM) by a BPM device. In this case, the tested person was 15 sitting with both hands laid on a table located in a quiet office room; no visual or acous-16 tic stimuli were present during the measurement (no conversation, no drinking, etc.). 17

Measuring experiments started with the reference phase (MF0) during which a 18 10-s record of temperature T1,2REF values were measured with both MCP sensors freely 19 laid on the desk. Within the initialization phase, optical PPG sensors OS1 and OS2 were 20 mounted on the person's left/right hand and the pressure cuff of a portable BPM device 21 was worn on the other arm of the tested person. Then in the monitoring mode, was 22 verified the quality of sensed PPG signals before start of the practical measurements in 23 three main phases (MF1-3). In the frame of MF1, MF3 phases, two-channel PPG signals 24 were recorded together with measured temperatures T1, T2. 25

The first optical PPG sensor OS1 with the thermo-sensor MCP1 was placed on the 26 wrist artery (W), the OS2 sensor with MCP2 thermo-sensor was worn successively on 27 the index finger (F4) as demonstrated by an arrangement photo in Figure 2a. In paral-28 lel, the BP and HRBPM values were measured manually on the opposite hand using the 29 portable BPM device Microlife BP A150-30 AFIB by Microlife AG, Widnau, Switzer-30 land. In the phase MF2 with the time duration of 10 minutes (600 sec), the values from 31 thermo-sensors MPC1, MPC2 were received and stored to an output file without PPG 32 signal sensing. The total time duration of whole experiments is approx. 15+20 minutes 33 (depending on the length of the initialization part – see the time schedule in Figure 2b). 34 In the MF0 phase the temperature values were taken in the intervals of $T_{INT} = 1$ s, during 35 the MF1 an MF3 phases T_{INT} = 0.2 s was applied, and for measurement in the MF2 phase 36 $T_{\rm INT}$ = 4 s was used. 37

Figure 2. Arrangement of PPG and temperature measurement experiments: (**a**) principal photo, (**b**) used experimental and time schedule.

The currently collected corpus of two-channel PPG signals and temperature sequences consists of records taken from eight non-smoker volunteers — six males 2 (P1- 6_M) and two females (P1- 2_F) — with a mean age of 50 years. Each database record 3 includes: (1) two PPG wave files (containing PPG signals and T1, T2 sequences sensed 4 in parallel during the MF1 and MF3 phases) accompanied by two files with BP and HR 5 values measured manually by the external BPM device; (2) two separate files with temperature and time values recorded during the MF0 and MF2 phases. 7

Partial and summary results obtained for all tested persons are evaluated sepa-8 rately in dependence on the processed signal type. Partial results of signal parameters 9 determined from PPG waves taken within the MF1 and MF3 measurement phases for 10 one person are shown in Figure 3; summary numerical values of investigated differen-11 tial parameters for all tested subjects are enumerated in Table 1. The demonstration 12 example of concatenated temperature sequences from the MF0-3 phases for the MCP1, 13 MCP2 thermo-sensors can be seen in Figure 4; visualization of corresponding statistical 14parameters is shown in graphs in Figure 5. Summary temperature differential and sta-15 tistical parameters separately for the MCP1, MCP2 thermo-sensors for all tested per-16 sons are presented in Table 2. 17

Figure 3. Partial results of PPG signal properties taken in the MF1 and MF3 phases for person 18 P1_M (from left to right): mean HR values, HR variations, PPG signal range and HP ripple, and 19 relative PTT values. 20

Table 1. Summary mean differential parameters together with their std (in parentheses) deter-21mined separately for PPGA and PPGB waves within MF1, MF3 phases; for all tested persons.22

PPG Signal	ΔHR var [%]	ΔS range [%]	Δ <i>HP</i> ripple [%]	Δ rPTT [%]
PPGA	-2.70 (1.51) 7.10 (3.35) 1.33 (1.35)		1.33 (1.35)	0.406 (0.86)
PPGB	-3.32 (1.59)	3.19 (2.35)	-6.15 (1.46)	-0.496 (0.66)

Figure 4. Concatenated sequences from thermo-sensors MCP1, MCP2 together with fitted linear24regressions, calculated mean and ΔT values; concatenate for measuring phases MF0-3,25 $T_{\text{REF}} = 26.5^{\circ}\text{C}$, baseline for MF1-3 measurements is 28.1°C, tour=738 s, person P1M.26

Figure 5. Statistical parameters determined from temperature sequences T1, T2 from thermo-1sensors MCP1, MCP2 introduced in Figure 4 (from left to right): mean values, relative variations,2 Δ T values, gradients, and differential T12 values between MCP1's and MCP2's for each of three3measurement phases (MF1-3); final values MF123 determined for whole measurement.4

Table 2. Summary temperature mean parameters together with their std (in parentheses) de-termined inMF0-3 phases separately for MCP1, MCP2 thermo-sensors, for all tested persons.

Phase	<i>T</i> var [%]		ΔT [°C] T_{GRAD} [°		C/s]	T10 [0C]	
	MCP1	MCP2	MCP1	MCP2	MCP1	MCP2	112DIFF [°C]
MF0	—	—	—	—	—	—	0.11 (0.2)
MF1	0.47 (0.63)	0.49 (0.54)	1.3 (0.72)	1.1 (0.66)	0.0208 (0.0113)	0.0175 (0.0103)	1.37 (0.8)
MF2	0.67 (0.2)	0.68 (0.23)	1.9 (1.50)	2.4 (1.51)	0.0031 (0.0024)	0.0041 (0.0025)	1.08 (0.9)
MF3	0.19 (0.02)	0.24 (0.08)	0.04(0.04)	0.04 (0.03)	0.0006 (0.0007)	0.0006 (0.0005)	0.93 (0.8)
MF0-3	0.45 (0.3)	0.47 (0.2)	4.3 (2.1)	4.1 (2.1)	0.0058 (0.0021)	0.0056 (0.0030)	0.87 (0.5)
Summary	0.46 (0.019)		4.20 (0.087)		0.0057 (0.0002)		_

4. Discussion and Conclusions

The performed experiments have demonstrated the continually raised tempera-8 ture during all 12-minute measurements consisting of MF1-3 phases. It was caused 9 partially by internal heating from powered analogue parts of optical sensors but 10 mainly by contact warming from the skin of the hand (wrist and finger) of the tested 11 person. Next, it was found that the temperature increase depends heavily on the place-12 ment of the PPG sensors: higher ΔT were obtained from the thermo-sensor MCP1 lo-13 cated on the wrist but the final increase of T2 values taken from the index finger by the 14 MCP2 thermo-sensor was always lower. While the difference between T1 and T2 val-15 ues obtained in the reference phase MF0 was minimal (typically given by a chosen 16 precision of the used thermo-sensors), the maximum T12DIFF was detected usually at 17 the end of the MF1 phase and it was practically constant until the end of the whole 18 experiment. The same trend was observed for T_{GRAD} parameter but the variability of 19 T1, T2 values was slightly higher in frame of the MF2 phase as documented the sum-20 mary values in Table 2. 21

Temperature changes have also influence on the parameters of PPG signals sensed 22 in the M1 and MF3 phases – compare summary values in Table 1. Two-channel PPG 23 signals (PPG_A and PPG_B waves) taken in the MF3 phases have always higher Srange in 24 comparison with the one sensed in the MF1 phase during which the temperatures T1 25 and T2 are lower. In the case of the HP ripple, this trend was not finally confirmed – so 26 these values are practically temperature independent. Higher relative variation of HR 27 values determined from PPG waves in the MF1 phase have direct relation with lower 28 PPG signal range (generally similar to the signal-to noise ratio in the signal processing 29 area). Finally, detected slight (although not important) changes in the *rPTT* parameter 30 can be affected by other factors – mainly by the blood pressure. 31

The final recommendation following from the experiments performed currently 32 is to keep worn the optical PPG sensors on the tested fingers (wrist) cca 5÷10 minutes 33 before the start of the PPG signal sensing to obtain proper PPG waves with sufficient 34 signal range and pronounced systolic peaks. It is important to obtain subsequently determined parameters with the proper accuracy. 36

7

5

	Author Contributions: Conceptualization and methodology, J.P., A.P., and I.F.; data collection, processing, and visualization, J.P.; writing—original draft preparation, J.P. and A.P.; writing—review and editing, A.P.; project administration, J.P.; funding acquisition, J.P. All authors have read and agreed to the published version of the manuscript.	1 2 3 4	
	Funding: This work was funded by the Slovak Scientific Grant Agency project VEGA2/0004/23 and the Slovak Research and Development Agency project APVV-19-0531.	5 6	
	Institutional Review Board Statement: Institutional review board statement was waived for this study, due to testing authors themselves and colleagues from IMS SAS. No personal data were saved, only PPG signals and skin temperature sensed on wrist/finger, and blood pressure values were used in this research.	7 8 9 10	
	Informed Consent Statement: Not applicable.	11	
	Data Availability Statement: Not applicable.	12	
	Conflicts of Interest: The authors declare no conflict of interest.	13	
Ref	rences	14	
1. 2.	 Moelker, A.; Wielopolski, P.A.; Pattynama, P.M.T. Relationship between magnetic field strength and magnetic-resonance- related acoustic noise levels. <i>Magn. Reson. Mater. Phys. Biol. Med.</i> 2003, <i>16</i>, 52–55, doi: 10.1007/s10334-003-0005-9. Glowacz, A. Thermographic fault diagnosis of electrical faults of commutator and induction motors. <i>Engineering Applications</i> 		
3.	 of Artificial Intelligence 2023, 121, 105962. <u>https://doi: 10.1016/j.engappai.2023.105962</u> Nitzan, M.; Ovadia-Blechman, Z. Physical and physiological interpretations of the PPG signal. In <i>Photoplethysmography: Technology, Signal Analysis, and Applications,</i> Kyriacou, P.A., Allen, J., Eds.; Elsevier: London, United Kingdom, 2022; pp. 319–339 ISBN: 978-0-12-823374-0 		
4.	Celka, P., Charlton, P.H., Farukh, B., Chowienczyk, P., Alastruey, J. Influence of mental stress on the pulse wave features of photoplethysmograms. <i>Healthc Technol Lett</i> 2020 , <i>7</i> , 7–12, doi: 10.1049/htl.2019.0001.	22 23	
5.	 Steckner, M.C. A review of MRI acoustic noise and its potential impact on patient and worker health. <i>eMagRes</i> 2020, 9, 2 38. doi: 10.1002/9780470034590.emrstm1628. 		
6.	Marques, J.P.; Simons F.J.; Webb, A.G. Low-field MRI: An MR physics perspective. <i>Journal of Magnetic Resonance Imaging</i> 2019 , <i>49</i> , 1528-1542, doi: 10.1002/jmri.26637.	26 27	
7.	Přibil, J.; Přibilová, A.; Frollo, I. Comparison of three prototypes of PPG sensors for continual real-time measurement in weak magnetic field. <i>Sensors</i> 2022 , <i>22</i> , 3769:1-3769:21, doi: 10.3390/s22103769.	28 29	
8.	Přibil, J.; Přibilová, A.; Frollo, I. First-step PPG signal analysis for evaluation of stress induced during scanning in the operative device. <i>Sensors</i> 2020, 20, 3532. https://doi.org/10.3390/s20123532.		
9.	. Zhang, M.; Wei, P.F.; Li, Y. A LabVIEW based measure system for pulse wave transit time. In Proceedings of the Interr tional Conference on Information Technology and Applications in Biomedicine, ITAB 2008, Shenzhen, China, 30–31 M 2008.		
10.	.0. Adafruit Metro Mini 328 V2 - Arduino-Compatible - 5V 16MHz - STEMMA QT / Qwiic. Available online: <u>https://www.ad</u> fruit.com/product/2590 (accessed on January 6, 2023)		
11.	 Adafruit MCP9808 Precision I2C Temperature Sensor Guide. Available online: <u>https://cdn-learn.adafruit.com/downloads/pdf/adafruit-mcp9808-precision-i2c-temperature-sensor-guide.pdf</u> (accessed on January 6, 2023) 		