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Abstract: When it comes to growing lettuce, specific nutrients play vital roles in its growth and 

development. These essential nutrients include full nutriments (FN), nitrogen (N), phosphorus (P), 

and potassium (K). Insufficient or excess levels of these nutrients can have negative effects on lettuce 

plants, resulting in various deficiencies that can be observed in the leaves. To better understand and 

identify these deficiencies, a deep learning approach is employed to improve these tasks. For the 

study, YOLOv8 Nano, a lightweight deep network, is chosen to classify the observed deficiencies in 

lettuce leaves. Several enhancements to the baseline algorithm are made, the backbone is replaced 

with VGG16 to improve the classification accuracy, and depthwise convolution is incorporated into 

it to enrich the features while keeping the head unchanged. The proposed network, incorporating 

these modifications, achieved superior classification results with a top-1 accuracy of 99%. This per-

formance outperformed other state-of-the-art classification methods, demonstrating the effective-

ness of the approach in identifying lettuce deficiencies. The objective of the research was to improve 

a baseline algorithm that could achieve the classification task above 85% of top-1 accuracy, with a 

FLOP inferior to 10G, and classification latency below 170 ms per image. 
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1. Introduction 

Lettuce (Lactuca sativa) is a widely cultivated leafy vegetable with significant eco-

nomic and dietary importance. Adequate nutrient supply, particularly Nitrogen (N), 

Phosphorus (P), and Potassium (K) is essential for optimal lettuce growth and quality. 

Nitrogen is a primary component of chlorophyll and essential for photosynthesis. Nitro-

gen deficiency in lettuce results in stunted growth, pale leaves, and reduced leaf size, af-

fecting the overall yield and nutritional content of lettuce, as well as its susceptibility to 

diseases [1]. Phosphorus is crucial for energy transfer in plants and plays a key role in 

root development. Lettuce plants deficient in phosphorus exhibit poor root growth, de-

layed maturity, and smaller heads. Phosphorus deficiency can also lead to decreased nu-

trient uptake, negatively impacting overall plant health [2]. Potassium is vital for main-

taining plant turgor, enzyme activation, and disease resistance. Lettuce plants with potas-

sium deficiency display wilted leaves, necrosis at leaf margins, and reduced resistance to 

pathogens [3]. Potassium deficiency can reduce the lettuce’s marketability due to de-

creased visual appeal [4]. 
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This paper is structured as follows: Section 2 relates the previous research on lettuce 

deficiencies, Section 3 presents the materials and methods, Section 4 discusses the experi-

mental results of the proposed method, and finally, Section 5 provides the conclusions of 

this article and future work. 

2. Related Work 

In recent years, there has been a growing interest in the development of deep learn-

ing-based approaches for the diagnosis and early detection of nutrient deficiencies in let-

tuce plants. Watchareeruetai et al. introduced in 2018 an image analysis method for iden-

tifying nutrient deficiency in plants based on their leaves using convolutional neural net-

works [5], setting the stage for subsequent research in this area. In addition, a deep con-

volutional neural network for image-based diagnosis of nutrient deficiencies in plants 

grown in Aquaponics is proposed by Taha et al. in 2022 [6]. Furthermore, Lu et al., in 2023 

introduced a lettuce pant trace-element-deficiency symptom identification via machine 

vision methods [7]. Collectively, these studies represent significant contributions to the 

field of lettuce NPK deficiency detection and illustrate the increasing reliance on deep 

learning methodologies for precision agriculture applications. Continued research in this 

area is crucial to developing sustainable agricultural practices that can meet the increasing 

demand for high-quality lettuce. In this way a deep learning approach called YOLO-NPK 

based on YOLOv8 Nano Classification algorithms [8,9] is employed in this study, to clas-

sify those deficiencies. The objective of the research is to improve a baseline algorithm that 

could achieve the classification task above 85% of Top-1 Accuracy, with a FLOP inferior 

to 10G, and classification latency below 170 ms per image.  

3. Materials and Methods 

3.1. Data Acquisition and Augmentation Strategy 

The lettuce NPK dataset [10] was acquired on Kaggle. This dataset contains images 

of the following lettuce deficiency category together with Fully Nutritional lettuce: Fully 

Ntrutional (FN) 12 images, Nitrogen Deficient (-N) 58 images, Phosphorus Deficient (-P) 

66 images, and Potassium Deficient (-K), 72 images. The images in this dataset were done 

in a controlled environment for a project on hydroponic lettuce deficiencies. The idea was 

to build a system that recognizes the lettuce deficiencies from the captured images and 

provides the classification of these deficiencies in hydroponics and other applications 

(Figure 1).  

 

Figure 1. The dataset samples. (a)Fully Nutritional lettuce (FN); (b) Nitrogen Deficiency (-N); (c) 

Phosphorus Deficiency (-P); (d) Potassium Deficiency (-K). 

Augmentation techniques have been used to increase the training set and the valida-

tion set. The following pre-processing was applied to each image: auto-orientation of pixel 

data (with EXIF-orientation stripping) and resizing to 640 × 640 (Stretch). Furthermore, 

the successive augmentation was applied to create augmented versions of each source 

image: 50% probability of horizontal flip, 50% probability of vertical flip, equal probability 

of one of the following 90-degree rotations: none, clockwise, counter-clockwise, upside-

down, randomly crop between 0 and 20 percent of the image, random shear of between -
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15° to +15° horizontally and -15° to +15° vertically. 3192 samples were obtained from aug-

mentation, with −K 1175, −N 975, −P 847, and FN 195. Therefore, the dataset was split into 

70% for the training and 30% for the validation. 

3.2. VGG16 (Visual Geometry Group 16) Feature Extractor 

VGG16 (Visual Geometry Group 16) is a convolutional neural network (CNN) archi-

tecture for deep learning that was developed by the Visual Geometry Group at the Uni-

versity of Oxford [11]. It is part of the VGG family of models and is known for its simplic-

ity and effectiveness in image classification tasks. It consists of 16 weight layers, including 

13 convolutional layers and 3 fully connected layers. The architecture uses 3 × 3 convolu-

tional filters with a stride of 1 and 2 × 2 max-pooling layers with a stride of 2. Also, it is 

characterized by its deep architecture, with small 3x3 convolutional filters stacked multi-

ple times. This depth helps the network learn complex hierarchical features from images. 

The network uses 3 × 3 convolutional filters with a stride of 1 and “same” padding, which 

means the spatial dimensions of the feature maps do not change after convolutions. Rec-

tified Linear Units (ReLU) are used as the activation function in the network, helping with 

the vanishing gradient problem and improving training. 

3.3. Depthwise Convolution 

Depthwise convolution is a specific type of convolutional operation used in deep 

learning and convolutional neural networks (CNNs). It is a fundamental building block 

for various lightweight and efficient neural network architectures, particularly those de-

signed for mobile and edge devices [12]. Depthwise convolution differs from standard 

convolution in how it processes input channels. In a standard convolution operation, a 

kernel (also called a filter) slides through the entire input volume, considering all input 

channels simultaneously. In contrast, in depthwise convolution, each input channel is con-

volved with a separate kernel. This means that if you have k input channels and k separate 

kernels, each kernel is responsible for convolving with its corresponding input channel. It 

significantly reduces the number of parameters in the model compared to standard con-

volution. This reduction in parameters can lead to models that are more memory-efficient 

and faster to compute, making them suitable for resource-constrained environments. Of-

ten used in conjunction with pointwise convolution (1 × 1 convolution). This combination 

is referred to as a depthwise separable convolution. In depthwise separable convolution, 

the depthwise convolution layer is followed by a 1 × 1 pointwise convolution layer. The 

pointwise convolution combines the information from the separate channels produced by 

the depthwise convolution. Lastly, it maintains the spatial dimensions (width and height) 

of the input, but it can change the number of channels (depth). This contrasts with stand-

ard convolution, which can also change spatial dimensions. So, it is particularly efficient 

when dealing with low-level features in an image, where inter-channel correlations are 

not as significant. By separating the channels, it reduces computational complexity. 

3.4. YOLOv8 (You Only Look Once version 8) 

The YOLO (You Only Look Once) series [8,13–18] refers to a family of real-time object 

detection models that have been widely used in computer vision and deep learning. 

YOLO was initially introduced by Redmon et al. [9] in 2016 and has since seen several 

iterations, each with improvements and enhancements [8,9]. The primary idea behind 

YOLO is to perform object detection in a single forward pass of a neural network, making 

it very efficient and suitable for real-time applications. YOLOv8, developed by Ultralytics, 

represents the most recent iteration of the YOLO series. As an advanced and state-of-the-

art model, it extends upon the achievements of its predecessors by introducing novel fea-

tures and enhancements, resulting in elevated levels of performance, adaptability, and 

resource efficiency. YOLOv8 boasts comprehensive support for a wide spectrum of vi-
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sion-based artificial intelligence tasks, encompassing detection, segmentation, pose esti-

mation, tracking, and classification. This versatility empowers users to harness the diverse 

capabilities of YOLOv8 across a multitude of applications and domains. 

3.5. YOLO-NPK 

To enhance classification accuracy, the VGG16 feature extractor is integrated into the 

backbone of YOLOv8n-cls (YOLOv8 Nano Classification). Furthermore, depthwise con-

volution is introduced within the feature extractor to facilitate feature reuse and empower 

the deep network to extract more complex and richer features. The diagram below pro-

vides an overview of the proposed approach for classifying lettuce deficiencies. The pro-

posed feature extractor receives a 640 × 640 RGB deficient lettuce image as input and ex-

tracts richer features. The classification head fuses the learned feature and performs a clas-

sification task, returning a classification result as output (Figure 2).  

 

Figure 2. The architecture of YOLO-NPK. Conv, DW, MP, and nc respectively stand for convolution, 

depthwise convolution, max-pooling layer, and number of classes. The original backbone of 

YOLOv8n-cls has been replaced with the proposed feature extractor, and the classification head 

remains unchanged. 

4. Results and Discussion 

4.1. Experimental Setup 

The experiments were carried out on a computer equipped with the following spec-

ifications: an Intel®  Core™ i5-11400H processor 11th Generation with 64-bit architecture, 

running at 2.70GHz and featuring a dodecore CPU. Additionally, the computer was 

equipped with an NVIDIA GeForce RTX 3050 GPU. The model received input images 

sized at 640 x 640 pixels. However, due to constraints on GPU memory, the batch size was 

set to 8 during training. The training process spanned 116 epochs and commenced with 

an initial learning rate of 0.01, which was later adjusted to a final learning rate of 0.1. 

Moreover, specific hyperparameters were set as follows: a momentum of 0.937 and a 

weight decay of 0.0005. During the warmup epoch, warmup momentum, and warmup 

bias learning rate stages, the values were configured at 3.0, 0.8, and 0.1, respectively. The 

optimizer employed for training the models was Stochastic Gradient Descent (SGD). Data 

augmentation techniques were used proportionally such as mosaic, paste-in, and scaling 

while training the deep network to avoid unbalanced classes. The early stop mechanism 

was employed to overcome overfiting.  

In the context of classification accuracy, Top-1 Accuracy refers to the proportion of 

correctly classified samples where the model’s top prediction matches the true label. It can 

be mathematically expressed as follows: 

𝑇𝑜𝑝1 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 × 100  (1) 

In this expression, Number of Correct Predictions is the count of instances where the 

model’s top prediction matches the true class labels, and Total Number of Predictions is the 

total number of instances or samples in the dataset. The result is typically expressed as a 
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percentage to represent the accuracy rate. Top-1 Accuracy is a common metric used to eval-

uate the performance of classification models, where only the highest-confidence predic-

tion is considered for each sample. 

4.2. Ablation Study 

Several components of the YOLOv8n-cls backbone were modified to obtain the de-

sired results. The overall structure of the backbone was replaced by the VGG16 feature to 

improve the classification accuracy, and the depthwise convolutional layers were inserted 

along the feature extractor to allow efficient memory computation and better reuse of fea-

tures. These operations have shown interesting improvement. Table 1 provides details on 

these diverse modifications.  

Table 1. Ablation study on different modifications of YOLO-NPK. 

VGG16 
Depthwise 

Convolution 
Top-1 Accuracy (%) FLOPs (G) CPU Latency (ms) 

  93 3.3 19.8 

✓  97.5 14.5 68.3 

 ✓ 95.2 2.4 18.2 

✓ ✓ 99 9.2 64.1 

4.3. Classification Performance 

The performance of YOLO-NPK was measured on the validation set, which repre-

sents all the classes. Notably, it shows acceptable results in terms of classification. The 

model performs efficiently on the FN set and achieves good classification results on other 

classes(-N, -P, and -K). Figure 3 shows the confusion matrix of the proposed model. Figure 

4 shows the classification output of YOLO-NPK. 

 

Figure 3. The confusion matrix of YOLO-NPK. (a) confusion matrix. (b) confusion matrix normal-

ized Fully Nutritional lettuce (FN); Phosphorus Deficiency (-P); Nitrogen Deficiency (-N); (d) Potas-

sium Deficiency (-K). True represents the ground truth in the dataset, predict is the classification 

result, and the background is the images that were missed by the model. 

This proves the learning capability of the proposed method. More details are pro-

vided in Table 2. 

Table 2. Classification performance of YOLO-NPK. FN, -N, -P, and -K respectively represent Full 

Nutritional, Nitrogen deficiency, Phosphorus deficiency, and Potassium deficiency. 
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Classes Images 
Correctly Classified Falsely Classified Missed 

Count  Rate Count Rate Count Rate 

FN 53 53 100 % 0 0 % 0 0 % 

-N 279 274  98.21 % 5 1.79 % 0 0 % 

-P 256 254 99.22 % 2 0.78 % 0 0 % 

-K 370 367 99.19 % 3 0.81 % 0 0 % 

 

Figure 4. The classification output of YOLO-NPK. (a)Fully Nutritional lettuce (FN); (b) Phosphorus 

Deficiency (-P); (c) Nitrogen Deficiency (-N); (d) Potassium Deficiency (-K). 

4.4. Comparison of State-of-the-art Methods 

The proposed method, YOLO-NPK, was compared with different state-of-the-art 

methods. The proposed one has shown better classification accuracy. The Top-1 Accuracy 

reached 99%, The FLOP 9.2G, and the classification latency per image 64.1 ms. This re-

spects the guidelines fixed before the experiments (Top-1 accuracy above 85%, FLOP un-

der 10G, and Latency below 170 ms). Other methods respected the FLOP and Latency 

conditions, but could not fulfill the Top-1 Accuracy expectation, proving the efficiency 

and the robustness of the proposed model. Table 3 gives details on those comparisons. 

Table 3. Comparison of the state-of-the-art method. 

Methods Images Size Top-1 Accuracy (%) FLOPs (G) CPU Latency (ms) 

SVM 640 85.3 12 141.6 

VGG16 640 87.9 15.2 170.3 

MobileNetV2 640 82.5 3.4 41.6 

ShuffleNetv2 640 81.6 2.1 30.8 

YOLOV8n-

cls 
640 93 3.3 19.8 

YOLO-NPK 640 99 9.2 64.1 

5. Conclusions and Future Work 

The study introduces YOLO-NPK, a lightweight deep neural network tailored for 

lettuce deficiency classification, building upon the foundation of YOLOv8 Nano Classifi-

cation. This research aimed to enhance the baseline algorithm by introducing a custom 

feature extractor aligned with the study’s needs. This goal was successfully met, achieving 

a Top-1 Accuracy exceeding 85%, maintaining a FLOP count under 10G, and ensuring a 

CPU latency below 170 ms per image, meeting the predefined objectives. Future plans 

involve integrating this solution into more complex systems for smart farming applica-

tions. 
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