Proceeding Paper

On the Efficiency of Ratio-product Estimator for Estimation of Finite Population Coefficient of Variation

Y. Zakari ${ }^{1{ }^{*}}$, M.A. Yunusa ${ }^{2}$, A. Rashida ${ }^{3}$, I. Muhammad ${ }^{4}$, A. S. Mohammed ${ }^{1}$ and A. Audu ${ }^{2}$
${ }^{1}$ Department of Statistics, Ahmadu Bello University, Zaria, Nigeria
${ }^{2}$ Department of Mathematics, Usmanu Danfodiyo University, Sokoto, Nigeria
${ }^{3}$ State College of Basic and Remedial Studies, Sokoto, Nigeria
${ }^{4}$ Department of Statistics, Binyaminu Usman Polytechnic, Hadejia, Nigeria
* Correspondence: Author: Email: yzakari@abu.edu.ng

Abstract

Ratio product estimators have been proposed by several authors for the estimation of population mean, and population variance, but very few authors have proposed ratio product estimators for the estimation of population coefficient of variation. In this paper, we proposed a ratio product estimator for the estimation of the population coefficient of variation. The mean square error of the proposed estimator has been obtained up to the first order of approximation using the Taylor series technique. The numerical analysis was conducted and the results show that the proposed ratio product estimator is more efficient.

Keywords: Estimator; MSE; Coefficient of variation; Study variable; Finite population

1. Introduction

Various estimation strategies have been developed by many researchers in the field of sample surveys for the estimation of population parameters Zakari et al. (2020a), Muhammad et al. (2021), Zakari et al., (2020b), and Muhammad et al., (2022). Some of the estimation methods use auxiliary information for the precision of the estimate of the parameter. Auxiliary information is information on auxiliary variables, like population mean, population variance, sample mean, sample variance, and so on which are used to improve the efficiency of estimators. Authors such as Sahai and Ray (1980), Sisodia and Dwivedi (1981), Singh and Singh (2002), Srivastava and Jhajj (1981), Solanki and Singh (2015), Singh and Solanki (2012), Singh and Tailor (2005), Kumar and Adichwal (2016), Shabbir and Gupta (2016), Adichwal et al. (2017) have worked in that direction.

For estimating the population coefficient of variation, Das and Tripathi (1981) were the first to propose the estimator for the coefficient of variation when samples were selected using SRSWOR. Other works include that of Patel and Shah (2009), Rajyaguru and Gupta (2002, 2006), Archana and Rao (2014), Singh et al. (2018), Audu et al. (2021), and Yunusa et al. (2021).

In the current study, we proposed a ratio product estimator in the presence of population mean, population variance, sample mean, and sample variance of X for the estimation of the population coefficient of variation of the study variable Y , with the aim of obtaining a precise estimate of the parameter.

Following the introduction is Section 2, which contains the methodology and some existing estimators in literature while Section 3 presents the proposed estimator, bias, and MSE of the proposed estimator. Section 4 discusses the efficiency comparisons of the proposed estimator while the empirical study and conclusion are presented in Sections 5 and 6 respectively.

2. Methodology

Let us consider a simple random sample size n drawn from the given population of N units. Let the value of the study variable Y and the auxiliary variable X for the $i^{\text {th }}$ units $(i=1,2,3,4, \ldots, N)$ of the population be denoted by Y_{i} and X_{i} and for the $i^{\text {th }}$ unit in the sample ($\mathrm{i}=1,2,3, \ldots, \mathrm{n}$) by y_{i} and x_{i} respectively
$\bar{Y}=\frac{1}{N} \sum_{i=1}^{N} Y_{i}$ and $\bar{X}=\frac{1}{N} \sum_{i=1}^{N} X_{i}$ - are the population means of the study and auxiliary variables.
$S_{y}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}$ - is the population variance of the study variable.
$S_{x}^{2}=\frac{1}{N-1} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)^{2}$ - is the population variance of the auxiliary variable.
$S_{x y}=\frac{1}{N-1} \sum_{i=1}^{N}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)$ - is the population covariance of the auxiliary and study variable.
$\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$ and $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ - are the sample mean of the study and auxiliary variables.
$s_{y}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$ - is the sample variance of the study variable.
$s_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ - is the sample variance of the auxiliary variable.
$s_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$ - is the sample covariance of the auxiliary and study variable.

Now, let us define sampling errors for both the mean and variance of Y and X :

$$
e_{0}=\bar{Y}^{-1}(\bar{y}-\bar{Y}), e_{1}=\bar{X}^{-1}(\bar{x}-\bar{X}), e_{2}=\left(S_{y}^{2}\right)^{-1}\left(s_{y}^{2}-S_{y}^{2}\right), e_{3}=\left(S_{x}^{2}\right)^{-1}\left(s_{x}^{2}-S_{x}^{2}\right)
$$

Such that
$\bar{y}=\bar{Y}\left(1+e_{0}\right), \bar{x}=\bar{X}\left(1+e_{1}\right), s_{y}=S_{y}\left(1+e_{2}\right)^{1 / 2}, s_{x}=S_{x}\left(1+e_{3}\right)^{1 / 2}, s_{y}^{2}=S_{y}^{2}\left(1+e_{2}\right), s_{x}^{2}=S_{x}^{2}\left(1+e_{3}\right)$

$$
\begin{aligned}
& E\left(e_{0}\right)=E\left(e_{1}\right)=E\left(e_{2}\right)=E\left(e_{3}\right)=0 \\
& E\left(e_{0}^{2}\right)=\gamma C_{y}^{2}, E\left(e_{1}^{2}\right)=\gamma C_{x}^{2}, E\left(e_{2}^{2}\right)=\gamma\left(\lambda_{40}-1\right), E\left(e_{3}^{2}\right)=\gamma\left(\lambda_{04}-1\right), \\
& E\left(e_{0} e_{1}\right)=\gamma \rho C_{y} C_{x}, E\left(e_{0} e_{2}\right)=\gamma C_{y} \lambda_{30}, E\left(e_{0} e_{3}\right)=\gamma C_{y} \lambda_{12}, \\
& E\left(e_{1} e_{2}\right)=\gamma C_{x} \lambda_{21}, E\left(e_{1} e_{3}\right)=\gamma C_{x} \lambda_{03}, E\left(e_{2} e_{3}\right)=\gamma\left(\lambda_{22}-1\right) . \text { Here } \gamma=n^{-1}(1-f),
\end{aligned}
$$

$f=n N^{-1}$ sampling fraction. $C_{y}=\bar{Y}^{-1} S_{y}$ and $C_{x}=\bar{X}^{-1} S_{x}$ are the population coefficient of variation for the study variable Y and auxiliary variable X . Also ρ denotes the correlation coefficient between X and Y .

In general,

$$
\mu_{r s}=(n-1)^{-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{r}\left(x_{i}-\bar{x}\right)^{s} \text { and } \lambda_{r s}=\mu_{r s}\left(\mu_{20}^{r / 2} \mu_{02}^{s / 2}\right)^{-1} \text { respectively. }
$$

2.1. Some existing estimators in literature

The estimator, for estimating population coefficient of variation in the absence of auxiliary variable is given by:

$$
\begin{equation*}
\hat{C}_{y}=\frac{s_{y}}{\bar{y}} \tag{2.1}
\end{equation*}
$$

The mean square error (MSE) expression of the estimator \hat{C}_{y} is given by:

$$
\begin{equation*}
\operatorname{MSE}\left(\hat{C}_{y}\right)=C_{y}^{2} \gamma\left(C_{y}^{2}+0.25\left(\lambda_{40}-1\right)-C_{y} \lambda_{30}\right) \tag{2.2}
\end{equation*}
$$

Archana and Rao (2014) introduced estimators for calculating the finite population coefficient of variation. These estimators were designed specifically for estimating the coefficient of variation for one component of a bivariate normal distribution, considering prior knowledge about the second component. They established a Cramer-Rao-type lower bound based on the mean square error of these estimators. Through extensive simulations, they compared 28 estimators and found that eight of them exhibited higher relative efficiency compared to the sample coefficient of variation. They also provided the asymptotic mean square errors for the most effective estimators, offering valuable insights for users in calculating the coefficient of variation. Thus, the estimators are given as:

$$
\begin{align*}
& t_{A R 1}=\hat{C}_{y}\left(\frac{\bar{X}}{\bar{x}}\right) \tag{2.3}\\
& t_{A R 2}=\hat{C}_{y}\left(\frac{\bar{x}}{\bar{X}}\right) \tag{2.4}\\
& t_{A R 3}=\hat{C}_{y}\left(\frac{S_{x}^{2}}{s_{x}^{2}}\right) \tag{2.5}\\
& t_{A R 4}=\hat{C}_{y}\left(\frac{s_{x}^{2}}{S_{x}^{2}}\right) \tag{2.6}
\end{align*}
$$

The mean square errors (MSEs) expression of the estimators is given by:
$\operatorname{MSE}\left(t_{A R 1}\right)=C_{y}^{2} \gamma\left[C_{y}^{2}+0.25\left(\lambda_{40}-1\right)+C_{x}^{2}-C_{x} \lambda_{21}-C_{y} \lambda_{30}+2 \rho C_{y} C_{x}\right]$
$\operatorname{MSE}\left(t_{A R 2}\right)=C_{y}^{2} \gamma\left[C_{y}^{2}+0.25\left(\lambda_{40}-1\right)+C_{x}^{2}+C_{x} \lambda_{21}-C_{y} \lambda_{30}-2 \rho C_{y} C_{x}\right]$
$\operatorname{MSE}\left(t_{A R 3}\right)=C_{y}^{2} \gamma\left[C_{y}^{2}+0.25\left(\lambda_{40}-1\right)+\left(\lambda_{04}-1\right)-\left(\lambda_{22}-1\right)-C_{y} \lambda_{30}+2 C_{y} \lambda_{12}\right]$
$\operatorname{MSE}\left(t_{A R 4}\right)=C_{y}^{2} \gamma\left[C_{y}^{2}+0.25\left(\lambda_{40}-1\right)+\left(\lambda_{04}-1\right)+\left(\lambda_{22}-1\right)-C_{y} \lambda_{30}-2 C_{y} \lambda_{12}\right]$

Audu et al. (2021) introduced three estimators that combine difference and ratio approaches for estimating the coefficient of variation in a finite population. These estimators utilize known population mean, population variance, and population coefficient of variation of an auxiliary variable. They also investigated the biases and mean square errors (MSEs) associated with these proposed estimators. By comparing their performance with existing estimators using information from two populations, they demonstrated that their proposed estimators were superior in efficiency compared to various other estimators, including unbiased, ratio type, exponential ratio type, and difference type estimators. Thus, the estimators are:
$T_{M 1}=\left[\frac{\hat{C}_{y}}{2}\left(\frac{\bar{X}}{\bar{x}}+\frac{\bar{x}}{\bar{X}}\right)+w_{1}(\bar{X}-\bar{x})+w_{2} \hat{C}_{y}\right]\left(\frac{\bar{X}}{\bar{x}}\right)$
$T_{M 2}=\left[\frac{\hat{C}_{y}}{2}\left(\frac{S_{x}^{2}}{s_{x}^{2}}+\frac{s_{x}^{2}}{S_{x}^{2}}\right)+w_{3}\left(S_{x}^{2}-s_{x}^{2}\right)+w_{4} \hat{C}_{y}\right]\left(\frac{S_{x}^{2}}{s_{x}^{2}}\right)$

The mean square errors of the estimators are given by
$\operatorname{MSE}\left(T_{M 1}\right)=C_{y}^{2}\left(A+w_{1}^{2} B+w_{2}^{2} C+2 w_{1} D-2 w_{2} E-2 w_{1} w_{2} F\right)$
$\operatorname{MSE}\left(T_{M 2}\right)=C_{y}^{2}\left(A_{1}+w_{3}^{2} B_{1}+w_{4}^{2} C_{1}+2 w_{3} D_{1}-2 w_{4} E_{1}-2 w_{3} w_{4} F_{1}\right)$
Where $A=\gamma\left(C_{x}^{2}+C_{y}^{2}+2 \rho C_{y} C_{x}-C_{x} \lambda_{21}-C_{y} \lambda_{30}+\frac{\left(\lambda_{40}-1\right)}{4}\right), B=\gamma \delta^{2}\left(\lambda_{04}-1\right)$ for $\delta=\frac{\bar{X}}{C_{y}}$
$C=1+\gamma\left(3 C_{x}^{2}+3 C_{y}^{2}+4 \rho C_{y} C_{x}-2 C_{x} \lambda_{21}-2 C_{y} \lambda_{30}\right), D=\gamma \delta\left(C_{x}^{2}+\rho C_{y} C_{x}-\frac{C_{x} \lambda_{21}}{2}\right)$
$E=\gamma\left(\frac{3 C_{x} \lambda_{21}}{2}-3 \rho C_{y} C_{x}-\frac{5 C_{x}^{2}}{2}-2 C_{y}^{2}+\frac{3 C_{y} \lambda_{30}}{2}-\frac{\left(\lambda_{40}-1\right)}{8}\right), F=\gamma \delta\left(\frac{C_{x} \lambda_{21}}{2}-\rho C_{y} C_{x}-2 C_{x}^{2}\right)$
and $A_{1}=\gamma\left(\left(\lambda_{04}-1\right)+C_{y}^{2}+2 C_{y} \lambda_{12}-\left(\lambda_{22}-1\right)-C_{y} \lambda_{30}+\frac{\left(\lambda_{40}-1\right)}{4}\right), B_{1}=\gamma \delta_{1}^{2}\left(\lambda_{22}-1\right)$ for $\delta_{1}=\frac{S_{x}^{2}}{C_{y}}$
$C_{1}=1+\gamma\left(3\left(\lambda_{04}-1\right)+3 C_{y}^{2}+4 C_{y} \lambda_{12}-2\left(\lambda_{22}-1\right)-2 C_{y} \lambda_{30}\right), D_{1}=\gamma \delta_{1}\left(\left(\lambda_{04}-1\right)+C_{y} \lambda_{12}-\frac{\left(\lambda_{22}-1\right)}{2}\right)$
$E_{1}=\gamma\left(\frac{3\left(\lambda_{22}-1\right)}{2}-3 C_{y} \lambda_{12}-\frac{5\left(\lambda_{04}-1\right)}{2}-2 C_{y}^{2}+\frac{3 C_{y} \lambda_{30}}{2}-\frac{\left(\lambda_{40}-1\right)}{8}\right), F_{1}=\gamma \delta_{1}\left(\frac{\left(\lambda_{22}-1\right)}{2}-C_{y} \lambda_{12}-2\left(\lambda_{04}-1\right)\right)$
and $w_{1}=\frac{C D-E F}{F^{2}-B C}, w_{2}=\frac{D F-B E}{F^{2}-B C}, w_{3}=\frac{C_{1} D_{1}-E_{1} F_{1}}{F_{1}^{2}-B_{1} C_{1}}$ and $w_{4}=\frac{D_{1} F_{1}-B_{1} E_{1}}{F_{1}^{2}-B_{1} C_{1}}$.
The minimum mean square errors of the estimators are given by
$\operatorname{MSE}\left(T_{M 1}\right)_{\min }=C_{y}^{2}\left[A+\frac{\left(C D^{2}+B E^{2}-2 D E F\right)}{\left(F^{2}-B C\right)}\right]$
$\operatorname{MSE}\left(T_{M 2}\right)_{\min }=C_{y}^{2}\left[A_{1}+\frac{\left(C_{1} D_{1}^{2}+B_{1} E_{1}^{2}-2 D_{1} E_{1} F_{1}\right)}{\left(F_{1}^{2}-B_{1} C_{1}\right)}\right]$

3. Proposed estimator

Having studied the estimators developed by Archana and Rao (2014) and Audu et al. (2021), for the estimation of finite population coefficient of variation, we therefore, proposed a new ratio product estimator in the presence of population mean, population variance, sample mean, and sample variance of X for the estimation of the population coefficient of variation of the study variable Y, with the aim of obtaining a precise estimate of the parameter. As such, the proposed estimator is given as:
$T_{g}=\hat{C}_{y}\left[k_{1}\left(\frac{\bar{X}}{\bar{x}}\right)\left(\frac{S_{x}^{2}}{s_{x}^{2}}\right)+k_{2}\left(\frac{\bar{x}}{\bar{X}}\right)\left(\frac{s_{x}^{2}}{S_{x}^{2}}\right)\right]$

Where, k_{1} and k_{2} are unknown constants to be determined.
Expressing equation (3.1) in terms of error terms, we have,
$T_{g}=\frac{S_{y}\left(1+e_{2}\right)^{1 / 2}}{\bar{Y}\left(1+e_{0}\right)}\left[k_{1}\left(\frac{S_{x}^{2}}{S_{x}^{2}\left(1+e_{3}\right)}\right)\left(\frac{\bar{X}}{\bar{X}\left(1+e_{1}\right)}\right)+k_{2}\left(\frac{S_{x}^{2}\left(1+e_{3}\right)}{S_{x}^{2}}\right)\left(\frac{\bar{X}\left(1+e_{1}\right)}{\bar{X}}\right)\right]$
After simplifying equation (3.2) to first order of approximation, we obtain
$\left.T_{g}=C_{y}\left[\begin{array}{l}1-e_{3}+e_{3}^{2}-e_{1}+e_{1} e_{3}+e_{1}^{2}-e_{0} \\ +e_{0} e_{3}+e_{0} e_{1}+e_{0}^{2}+\frac{e_{2}}{2}-\frac{e_{2} e_{3}}{2} \\ -\frac{e_{1} e_{2}}{2}-\frac{e_{0} e_{2}}{2}+\frac{e_{2}^{2}}{8}\end{array}\right)+k_{2}\left(\begin{array}{l}1+e_{3}+e_{1}+e_{1} e_{3}-e_{0}-e_{0} e_{3} \\ -e_{0} e_{1}+e_{0}^{2}+\frac{e_{2}}{2}+\frac{e_{2} e_{3}}{2}+\frac{e_{1} e_{2}}{2} \\ -\frac{e_{0} e_{2}}{2}-\frac{e_{2}^{2}}{8}\end{array}\right)\right]$
Subtracting C_{y} from both sides of equation (3.3), we have
$T_{g}-C_{y}=C_{y}\left[\left(\begin{array}{l}1-e_{3}+e_{3}^{2}-e_{1}+e_{1} e_{3}+e_{1}^{2}-e_{0} \\ +e_{0} e_{3}+e_{0} e_{1}+e_{0}^{2}+\frac{e_{2}}{2}-\frac{e_{2} e_{3}}{2} \\ -\frac{e_{1} e_{2}}{2}-\frac{e_{0} e_{2}}{2}+\frac{e_{2}^{2}}{8}\end{array}\right)+k_{2}\left(\begin{array}{l}1+e_{3}+e_{1}+e_{1} e_{3}-e_{0}-e_{0} e_{3} \\ -e_{0} e_{1}+e_{0}^{2}+\frac{e_{2}}{2}+\frac{e_{2} e_{3}}{2}+\frac{e_{1} e_{2}}{2} \\ -\frac{e_{0} e_{2}}{2}-\frac{e_{2}^{2}}{8}\end{array}\right)-1\right]$

Taking expectation on both sides of equation (3.4) to obtain the bias of the estimator as
$\operatorname{Bias}\left(T_{g}\right)=C_{y}\left[k_{1}\left(1+\gamma\left(\begin{array}{l}\left(\lambda_{04}-1\right)+C_{x} \lambda_{03}+C_{x}^{2} \\ +C_{y} \lambda_{12}+\rho C_{y} C_{x}+C_{y}^{2} \\ -\frac{\left(\lambda_{22}-1\right)}{2}-\frac{C_{x} \lambda_{21}}{2} \\ -\frac{C_{y} \lambda_{30}}{2}-\frac{\left(\lambda_{40}-1\right)}{8}\end{array}\right)\right)+k_{2}\left(1+\gamma\left(\begin{array}{l}C_{x} \lambda_{03}-C_{y} \lambda_{12} \\ -\rho C_{y} C_{x}+C_{y}^{2} \\ +\frac{\left(\lambda_{22}-1\right)}{2}+\frac{C_{x} \lambda_{21}}{2} \\ -\frac{C_{y} \lambda_{30}}{2}-\frac{\left(\lambda_{40}-1\right)}{8}\end{array}\right)\right)-1\right]$
Squaring and taking expectation on both sides of equation (3.4) to obtain the mean square error (MSE) of the estimator as
$\operatorname{MSE}\left(T_{g}\right)=C_{y}^{2}\left(1+k_{1}^{2} A_{2}+k_{2}^{2} B_{2}+2 k_{1} k_{2} C_{2}-2 k_{1} D_{2}-2 k_{2} E_{2}\right)$
Where, $A_{2}=1+\gamma\left(3\left(\lambda_{04}-1\right)+4 C_{x} \lambda_{03}+3 C_{x}^{2}+4 C_{y} \lambda_{12}+4 \rho C_{y} C_{x}+3 C_{y}^{2}-2\left(\lambda_{22}-1\right)-2 C_{x} \lambda_{21}-2 C_{y} \lambda_{30}\right)$,
$B_{2}=1+\gamma\left(4 C_{x} \lambda_{03}-4 C_{y} \lambda_{12}-4 \rho C_{y} C_{x}+3 C_{y}^{2}+2\left(\lambda_{22}-1\right)+2 C_{x} \lambda_{21}-2 C_{y} \lambda_{30}+\left(\lambda_{04}-1\right)+C_{x}^{2}\right)$,
$C_{2}=1+\gamma\left(3 C_{y}^{2}-2 C_{y} \lambda_{30}\right)$,

$$
\begin{aligned}
& D_{2}=1+\gamma\binom{\left(\lambda_{04}-1\right)+C_{x} \lambda_{03}+C_{x}^{2}+C_{y} \lambda_{12}+\rho C_{y} C_{x}+C_{y}^{2}-\frac{1}{2}\left(\lambda_{22}-1\right)-\frac{1}{2} C_{x} \lambda_{21}-\frac{1}{2} C_{y} \lambda_{30}}{-\frac{1}{8}\left(\lambda_{40}-1\right)}, \\
& E_{2}=1+\gamma\left(C_{x} \lambda_{03}-C_{y} \lambda_{12}-\rho C_{y} C_{x}+C_{y}^{2}+\frac{1}{2}\left(\lambda_{22}-1\right)+\frac{1}{2} C_{x} \lambda_{21}-\frac{1}{2} C_{y} \lambda_{30}-\frac{1}{8}\left(\lambda_{40}-1\right)\right) .
\end{aligned}
$$

Differentiating equation (3.6) partially with respect to k_{1} and k_{2} and equate the terms obtained to zero, we get: $A_{2} k_{1}+C_{2} k_{2}=D_{2}$ and $C_{2} k_{1}+B_{2} k_{2}=E_{2}$, solving these simultaneously we get the optimum values of k_{1} and k_{2} as:

$$
k_{1}=\frac{B_{2} D_{2}-C_{2} E_{2}}{A_{2} B_{2}-C_{2}^{2}} \text { and } k_{2}=\frac{A_{2} E_{2}-C_{2} D_{2}}{A_{2} B_{2}-C_{2}^{2}}, \text { putting these expressions into equa- }
$$ tion (3.6) gives the minimum mean square error (MSE) min as:

$$
\begin{equation*}
\operatorname{MSE}\left(T_{g}\right)_{\min }=C_{y}^{2}\left[1-\frac{\left(A_{2} E_{2}^{2}+B_{2} D_{2}^{2}-2 C_{2} D E_{2}\right)}{\left(A_{2} B_{2}-C_{2}^{2}\right)}\right] \tag{3.7}
\end{equation*}
$$

4. Efficiency comparisons

In this section, efficiency conditions of T_{g} over sample coefficient of variation \hat{C}_{y}, $t_{A R 1}, t_{A R 2}, t_{A R 3}, t_{A R 4}, T_{M 1}$ and $T_{M 2}$ were established.
i. $\quad T_{g}$ is more efficient than \hat{C}_{y} if:

$$
\begin{equation*}
\operatorname{MSE}\left(T_{g}\right)_{\min }<\operatorname{MSE}\left(\hat{C}_{y}\right) \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
\left(1-\frac{\left(A_{2} E_{2}^{2}+B_{2} D_{2}^{2}-2 C_{2} D_{2} E_{2}\right)}{\left(A_{2} B_{2}-C_{2}^{2}\right)}\right)<\gamma\left(C_{y}^{2}+0.25\left(\lambda_{40}-1\right)-C_{y} \lambda_{30}\right) \tag{4.2}
\end{equation*}
$$

ii. T_{g} is more efficient than $t_{A R 1}$ if:

$$
\begin{gather*}
\operatorname{MSE}\left(T_{g}\right)_{\min }<\operatorname{MSE}\left(t_{A R 1}\right) \tag{4.3}\\
\left(1-\frac{\left(A_{2} E_{2}^{2}+B_{2} D_{2}^{2}-2 C_{2} D_{2} E_{2}\right)}{\left(A_{2} B_{2}-C_{2}^{2}\right)}\right)<\gamma\left(C_{y}^{2}+0.25\left(\lambda_{40}-1\right)+C_{x}^{2}-C_{x} \lambda_{21}-C_{y} \lambda_{30}+2 \rho C_{y} C_{x}\right)
\end{gather*}
$$

iii. $\quad T_{g}$ is more efficient than $t_{A R 2}$ if:

$$
\begin{gather*}
\operatorname{MSE}\left(T_{g}\right)_{\min }<\operatorname{MSE}\left(t_{A R 2}\right) \tag{4.5}\\
\left(1-\frac{\left(A_{2} E_{2}^{2}+B_{2} D_{2}^{2}-2 C_{2} D_{2} E_{2}\right)}{\left(A_{2} B_{2}-C_{2}^{2}\right)}\right)<\gamma\left(C_{y}^{2}+0.25\left(\lambda_{40}-1\right)+C_{x}^{2}+C_{x} \lambda_{21}-C_{y} \lambda_{30}-2 \rho C_{y} C_{x}\right)
\end{gather*}
$$

iv. T_{g} is more efficient than $t_{A R 3}$ if:

$$
\begin{equation*}
\operatorname{MSE}\left(T_{g}\right)_{\min }<\operatorname{MSE}\left(t_{A R 3}\right) \tag{4.7}
\end{equation*}
$$

$$
\begin{equation*}
\left(1-\frac{\left(A_{2} E_{2}^{2}+B_{2} D_{2}^{2}-2 C_{2} D_{2} E_{2}\right)}{\left(A_{2} B_{2}-C_{2}^{2}\right)}\right)<\gamma\binom{C_{y}^{2}+0.25\left(\lambda_{40}-1\right)+\left(\lambda_{04}-1\right)-\left(\lambda_{22}-1\right)}{-C_{y} \lambda_{30}+2 C_{y} \lambda_{12}} \tag{4.8}
\end{equation*}
$$

v. $\quad T_{g}$ is more efficient than $t_{A R 4}$ if:

$$
\begin{gather*}
\operatorname{MSE}\left(T_{g}\right)_{\min }<\operatorname{MSE}\left(t_{A R 4}\right) \tag{4.9}\\
\left(1-\frac{\left(A_{2} E_{2}^{2}+B_{2} D_{2}^{2}-2 C_{2} D_{2} E_{2}\right)}{\left(A_{2} B_{2}-C_{2}^{2}\right)}\right)<\gamma\binom{C_{y}^{2}+0.25\left(\lambda_{40}-1\right)+\left(\lambda_{04}-1\right)+\left(\lambda_{22}-1\right)}{-C_{y} \lambda_{30}-2 C_{y} \lambda_{12}}
\end{gather*}
$$

vi. $\quad T_{g}$ is more efficient than $T_{M 1}$ if:

$$
\begin{gather*}
\operatorname{MSE}\left(T_{g}\right)_{\min }<\operatorname{MSE}\left(T_{M 1}\right) \tag{4.11}\\
\left(1-\frac{\left(A_{2} E_{2}^{2}+B_{2} D_{2}^{2}-2 C_{2} D_{2} E_{2}\right)}{\left(A_{2} B_{2}-C_{2}^{2}\right)}\right)<\left(A+\frac{\left(C D^{2}+B E^{2}-2 D E F\right)}{\left(F^{2}-B C\right)}\right)
\end{gather*}
$$

vii. T_{g} is more efficient than $T_{M 2}$ if:

$$
\begin{gather*}
\operatorname{MSE}\left(T_{g}\right)_{\min }<\operatorname{MSE}\left(T_{M 2}\right) \tag{4.13}\\
\left(1-\frac{\left(A_{2} E_{2}^{2}+B_{2} D_{2}^{2}-2 C_{2} D_{2} E_{2}\right)}{\left(A_{2} B_{2}-C_{2}^{2}\right)}\right)<\left(A+\frac{\left(C_{1} D_{1}^{2}+B_{1} E_{1}^{2}-2 D_{1} E_{1} F_{1}\right)}{\left(F_{1}^{2}-B_{1} C_{1}\right)}\right)
\end{gather*}
$$

5. Empirical Study

In this section, empirical study will carry out to demonstrate the performance of the proposed estimator over existing ones. Data from the book Murthy (1967) and Sarjinder Singh (2003) will used be used.

Population 1: [Source: Murthy (1967), p.399]
X: Area under wheat in 1963, Y: Area under wheat in 1964
$N=34, n=15, \bar{X}=208.88, \bar{Y}=199.44, C_{x}=0.72, C_{y}=0.75, \rho=0.98, \lambda_{21}=1.0045, \lambda_{12}=0.9406$,
$\lambda_{40}=3.6161, \lambda_{04}=2.8266, \lambda_{30}=1.1128, \lambda_{03}=0.9206, \lambda_{22}=3.0133$
Population 1: [Source: Sarjinder Singh (2003), p.1116]
X: Number of fish caught in year 1993, Y: Number of fish caught in year 1995
$N=69, n=40, \bar{X}=4591.07, \bar{Y}=4514.89, C_{x}=1.38, C_{y}=1.35, \rho=0.96, \lambda_{21}=2.19, \lambda_{12}=2.30$,
$\lambda_{40}=7.66, \lambda_{04}=9.84, \lambda_{30}=1.11, \lambda_{03}=2.52, \lambda_{22}=8.19$

Table 1. MSEs and PREs of Proposed and Existing estimators.

	Population1	Population 1	Population 2	Population 2
Estimators	MSE	PRE	MSE	PRE
\hat{C}_{y}	0.008003575	100	0.03808827	100
$t_{A R 1}$	0.02589068	30.91296	0.08517984	44.71512
$t_{A R 2}$	0.01184353	67.57761	0.06393314	59.57516

$t_{A R 3}$	0.03365777	23.77928	0.188603	20.19494
$t_{A R 4}$	0.05890541	13.58716	0.2261359	16.84309
$T_{M 1}$	0.006737495	118.7916	0.03533973	107.77748
$T_{M 2}$	0.006013652	133.09009	0.02810758	135.5089
T_{g}	$\mathbf{0 . 0 0 4 9 4 3 4 9 9}$	$\mathbf{1 6 1 . 9 0 1}$	$\mathbf{0 . 0 1 7 1 8 9 8 8}$	$\mathbf{2 2 1 . 5 7 3 8}$

Table1 above shows the mean square error (MSE) and the percentage relative efficiency (PRE) of the proposed estimator. The results revealed that the proposed estimator has minimum mean square error and higher percentage relative efficiency. This implies that the suggested estimator is more efficient than the existing ones.

6. Conclusion

In this study, we proposed ratio product estimator for estimation of finite population coefficient of variation. This estimator utilized information on the sample and population mean as well as the sample and population variance of the auxiliary variable X . From the numerical analysis, the results show that the proposed estimator is more efficient than the conventional estimators with the evidence of having minimum mean square error, hence, it should in real life situation for estimation.

References

1. Adichwal, N.K., Sharma, P., \& Singh, R. (2017) Generalized class of estimators for
population variance using information on two auxiliary variables. International Journal of Applied computational mathematics,3(2),651-66.
2. Archana, V., \& Rao, A. (2014). Some improved Estimators of co-efficient of variation from Bivariate normal distribution. A Monte Carlo comparison. Pakistan Journal of Statistics and Operation Research, 10(1). 87-105.
3. Audu, A., Yunusa M. A., Ishaq, O. O., Lawal, M. K., Rashida, A., Muhammed, A. H., Bello, A. B., Hairullahi, M. U., \& Muili, J. O. (2021). Difference- Cum-Ratio type estimators for estimating finite population coefficient of variation in Simple random sampling. Asian Journal of Probability and Statistics. 13(3): 13-29.
4. Das, A.K., \& Tripathi, T.P. (1981). A class of Estimators for co-efficient of Variation using knowledge on co-efficient of variation of an auxiliary character. In annual conference of Ind. Soc. Agricultural Sdtatistics. Held at New Delhi, India.
5. Kumar, N., \& Adichwal, R. (2016) Estimation of finite population mean using Auxiliary Attribute in sample surveys.
6. Muhammad, I., Zakari, Y., \& Audu, A. (2021). An alternative class of ratio-regression-type estimator under two-phase sampling scheme. CBN Journal of Applied Statistics, 12(2), 1-26.
7. Muhammad, I., Zakari, Y., \& Audu, A. (2022). Generalized estimators for finite population variance using measurable and affordable auxiliary character. Asian Research Journal of Mathematics, 18(1), 14-30.
8. Murthy, M.N. (1967) Sampling theory and methods. Sampling theory and methods.
9. Patel, P.A., \& Rina, S. (2009). A Monte Carlo comparison of some suggested estimators of coefficient of variation in finite population. Journal of statistics science, 1(2), 137-147.
10. Rajyaguru, A. \& Gupta, P. (2002). On the estimation of the coefficient of variation from finite population-I, Model Assisted Statistics and Application, 36(2), 145-156.
11. Rajyaguru, A and Gupta, P. (2006). On the estimation of the coefficient of variation from finite population -II, Model Assisted Statistics and Application, 1(1), 57-66.
12. Sahai, A., \& Ray, S.K. (1980). And efficient estimator using auxiliary information, Metrika 27(4), 271-275.
13. Shabbir J., \& Gupta, S. (2016) Estimation of Population coefficient of variation in sample and stratified Random Sampling under Two-phase sampling scheme when using Two Auxiliary variables. Communications in Statistics Theory and Methods, (just accept), 00-00
14. Singh, H.P., \& Singh, R. (2002). A class of chain ratio type estimators for the coefficient of variation of finite population in twophase sampling, Algarh. Journal of statistics, 22,1-9.
15. Singh, H.P. \& Solanki, R.S. (2012). An efficient class of estimators for the population mean using auxiliary information in systematic sampling. Journal of Statistical Theory and Practice 6(2), 274-285.
16. Singh, H.P., \& Tailor, R. (2005). Estimation of finite population mean with known coefficient of variation of an auxiliary character. Statistical, 65(3), 301-313.
17. Singh, S. (2003). Advanced Sampling Theory with Applications. How Michael "Selected" Amy (vol. 2). Springer Science and Media.
18. Singh, R., Mishra, M., Singh, B., P., Singhi, P., \& Adichwal, N., K. (2018). Improved estimators for population coefficient of variation using auxiliary variables. Journal of Statistics and Management. 21(7), 1335-1355.
19. Sisodia, B.V.S., \& Dwivedi, V.K. (1981). Modified ratio estimator using coefficient of variation of auxiliary variable. JournalIndian society of Agricultural statistics.
20. Solanki, R.S., \& Singh, H.P. (2015). And in proved class of estimators for the general population parameters using Auxiliary information. Communications in Statistics-Theory and Methods, 44(20), 4241-4262.
21. Srivastava, S.k., \& Jhajj, H. A (1981). A class of estimators of the population mean in survey sampling using auxiliary information Biometrika, 68(1), 341-343.
22. Yunusa, M. A., Audu, A., Musa, N., Beki, D. O., Rashida, A., Bello, A. B., \& Hairullahi, M. U. (2021). Logarithmic ratio type estimator of population of variation. Asian Journal of Probability and Statistics. 14(2): 13-22.
23. Zakari, Y., Muhammad, I., \& Sani, N. M. (2020a). Alternative ratio-product type estimator in simple random sampling. Communication in Physical Sciences, 5(4), 418-426.
24. Zakari, Y., Muili, J.O., Tela, M.N., Danchadi, N.S. \& Audu, A. (2020b). Use of Unknown Weight to Enhance Ratio-Type Estimator in Simple Random Sampling. Lapai Journal of Applied and Natural Sciences, 5(1), 74-81.
