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Abstract: Recently, fiber reinforced polymers (FRP) have been used for steel structure reinforce-

ment, following decades of successful utilization for the reinforcement of concrete structures. How-

ever, rehabilitation of tubular joints with a crack at the interface of mating members using FRP has 

rarely been investigated. A tubular KT-joint having a semi-elliptical crack subjected to axial tensile 

load is explored in this study. The joint was simulated using the fracture tool of ANSYS Structural, 

and the effect of crack size, location, and FRP reinforcement on stress intensity factor (SIF) was eval-

uated. The numerical simulations show that FRP reinforcement reduces the  (SIF), decreases the 

likelihood of crack growth, and may increase the fatigue life. A 4–12 % reduction per millimeter 

thickness of unidirectional FRP was recorded. 

Keywords: Crack mitigation; Crack growth; Composite reinforcement; Fracture analysis; Tubular 

joint. 

  

1. Introduction 

Offshore structures are subjected to various environmental and service loads, in ad-

dition to aging and corrosion. Possible defects can occur anywhere, including the joining 

point of tubular members, reducing the load-bearing capability of the entire system, with 

the weld line of the tubular joints being the most critical portion of an offshore structure, 

prone to crack initiation and rapid growth. Routine inspection identifies such deteriora-

tions and evaluates their effect and possible remedies [1]. Various rehabilitation tech-

niques can be adopted to recover or enhance the load capacity of tubular joints [2]. Re-

placement or repair of these cracks is vital for safe operation. However, replacement may 

be costly and practically impossible, with repair being the only viable option. Tradition-

ally, repair was accomplished by welding or clamping extra plates to reinforce damaged 

areas. Hot work such as cutting and welding are required to replace the corroded struc-

tures or add extra thickness, which increases the risk of disasters [3]. Techniques utilizing 

cold work are preferred for restoring oil and gas structures. Among these, fiber reinforce-

ment of a defective joint has many competitive advantages [2].  

Fiber reinforced polymers (FRP) have been used for the reinforcement of steel struc-

tures after decades of successful utilization for civil structures [4–6]. ASME PCC-2 [7] and 

ISO 24817 [8] cover the repair of pipelines using FRP as a legitimate repair technique. It 

can be applied without hot work (ambient temperature curing). Even structures under 

the water can be reinforced, as various specialized epoxies can cure in the aqueous envi-

ronment. FRP reinforcement of joints does not need load isolation; hence, shutdown of 
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the platform is not required. Reinforcement layup can be customized for specific strength 

and stiffness requirements at different joints, locations, and directions, and minimal repair 

materials suffice for various geometric shapes and load requirements [2]. Various re-

searchers have investigated FRP reinforcement of tubular joints in recent years, numeri-

cally and experimentally [9–15]. However, these studies focus on enhancing load capacity 

and fatigue life enhancement using FRP reinforcement. Most of these studies are on the 

reduction of stress concentration factor due to FRP, which can be used to determine the 

increase in fatigue life. Besides enhancing the load capacity, FRP reinforcement can miti-

gate crack propagation when a joint crack has been identified. Until now, the effect of FRP 

reinforcement on tubular joints with cracks at the interface has never been reported in 

open literature.  

The stress intensity factor (SIF) is an important parameter for the failure assessment 

of cracked structures. It can predict crack initiation and propagation. Stresses at the crack 

tip are proportional to SIF. The crack will grow further if the SIF exceeds the material's 

fracture toughness (FT) limit. But if the SIF is lower than FT, the crack will not propagate. 

Various two and three-dimensional fatigue crack problems have been investigated, and 

more than 600 formulas have been used for calculating SIF for different crack base geom-

etries, cracks, and loading conditions [16–25]. Depending on the load, the crack can be 

mode I, II, or III. Practical structures are subjected to various loads simultaneously, in-

cluding tension, shear, and torsion, resulting in a mixed crack mode [26]. The Fracture 

tool of ANSYS gives SIF for all three modes. The maximum of these shows the dominant 

mode of crack propagation. This paper investigates a cracked KT-joint using the fracture 

tool of ANSYS. The effect of crack size, crack location, and FRP reinforcement on SIF is 

evaluated.  

2. Methodology 

A typical KT-joint based on the dimensions of Ahmadi et al. [27] was modeled, as 

shown in Figure 1. A semi-elliptical crack was assumed at the weld line of the central 

brace-chord interface of a typical KT-joint. After sensitivity analysis, the model was 

meshed using 7,91,644 tetrahedral elements. An arbitrary crack was incorporated using 

the built-in fracture tool of ANSYS. The numerical model was simulated using the static 

structural module of ANSYS Workbench 21 R1. The ends of the chord and inclined braces 

were constrained in all degrees of freedom (fixed constraints), as shown in Figure 2. An 

axial tensile load of 30 MPa was applied on the central brace. Static structural analysis was 

performed using an HP Zbook Core i7-1185G7 workstation with 16 GB RAM. SIF was 

computed for all three modes of cracks, but only K1 was significant, as tensile loading was 

causing mode-I to be dominant. 
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Figure 1. Geometry of the KT-joint used for simulations [27]. 

 

Figure 2. KT-joint with a crack at the chord and central brace interface, reinforced with CFRP UDs. 

The effect of crack location was investigated by simulating cracks of the same dimen-

sion at different locations around the brace axis, namely the saddle, crown, and an arbi-

trary position in-between the saddle and crown, as shown Figure 3. A 1/4th model was 

assessed as a 1/4th symmetry can be assumed for a KT-joint with an axial tensile load on 

the central brace [28]. The effect of cracks at other positions can be approximated from 

these three positions. The interface region of the joint having the crack was reinforced with 

unidirectional Carbon FRP (CFRP), with a lamina thickness of 0.2mm. The mechanical 

properties of CFRP are listed in Table 1 [29]. A minimum overlap of 50mm was assumed 

to be sufficient around the chord-central brace interface. 

 

Figure 3. KT-joint with semi-elliptical crack. 

Table 1. Parameters of Semi-elliptical crack. [29] 

 Parameter Magnitude 

CFRP UD Young modulus, 𝐸𝑥 (GPa) 134 

 Young modulus, 𝐸𝑦 (GPa) 10.3 

 Young modulus, 𝐸𝑧 (GPa) 10.3 

 Shear modulus, 𝐺𝑥𝑦  (GPa) 5.5 

 Shear modulus, 𝐺𝑦𝑧 (GPa) 5.5 

 Shear modulus, 𝐺𝑥𝑧  (GPa) 3.2 

 Poisson's ratio, 𝜈𝑥𝑦 0.33 

 Poisson's ratio, 𝜈𝑦𝑧 0.53 

 Poisson's ratio, 𝜈𝑥𝑧 0.33 

Steel pipe Young modulus, 𝐸 (GPa) 211 
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 Poisson's ratio, 𝜈 0.3 

The effect of reinforcement thickness could be investigated either through variation 

in the number of layers for a given lamina thickness or selecting a fixed number of layers 

and varying the lamina thickness, with the lamina thickness depending on the thickness 

of the dry fabric, the layup process, and the curing method. Once the base material and 

fabrication process are selected, the number of layers and their orientation are varied for 

optimum response. The lamina thickness was fixed in the current study, while the effect 

of the number of layers was investigated. Different reinforcement layers were applied to 

the crack region, and the corresponding SIF was determined. Reinforcement layers can be 

oriented in different directions, and selecting the optimum orientation is vital [30,31]. For 

tensile load on the central brace, the best direction of reinforcement was orthogonal to the 

weld toe, as shown in Figure 2. Hence, the optimization of orientation was not investi-

gated in the current study.  

3. Results and Discussion 

The analyzed problem was mode-I dominant; hence, only results of SIF-K1 are pre-

sented. However, SIF reduction was noticed for all three modes. The numerical simula-

tions show the effectiveness of FRP reinforcement for reducing SIF and mitigating cracks, 

thus decreasing the chances of crack growth and increasing fatigue life. 

3.1. Effect of crack size 

The physical size of the crack has an obvious effect on the SIF. A semi-elliptical crack 

with different major and minor diameters was simulated. The major diameter was fixed 

twice the minor diameter to limit the variables, and a comparison of SIF as a function of 

the major diameter is shown in Figure 4. It was found that SIF increases with an increase 

in crack size. A similar effect of crack size was revealed by Subbaiah and Bollineni [32], 

for unreinforced pressurized cylinders; and Wnag et al. [33] for rectangular plates rein-

forced with FRP. SIF is usually high at the crack tips and reduces along the crack front 

towards the center. However, SIF is higher at the center for a relatively small crack.  

  

(a) (b) 

Figure 4. SIF variation with crack size (for a crack at the saddle position without re-

inforcement): (a) SIF along the crack front; (b) SIF at the crack tip. 

3.2. Effect of crack position 

The criticality of a crack depends on its location. A saddle point crack causes rela-

tively higher SIF than other positions, as shown in Figure 5. This effect is due to higher 

stress concentration at the saddle point than at the crown when a KT-joint is subjected to 

axial compressive load. When a tubular joint is subjected to combined load, the location 

of maximum stress depends on the direction and relative magnitude of load components 

[34]. For such situations, knowing the crack location would be critical for assessment. A 

specific size crack may be ignorable at one position and fatal for the same structure at 

another. 



Eng. Proc. 2023, 5, x FOR PEER REVIEW 5 of 4 
 

 

 

  

(a) (b) 

Figure 5. Effect of crack position on SIF (without reinforcement): (a) crack major diameter = 10 mm, 

minor diameter = 5 mm; (b) crack major diameter = 2 mm, minor diameter = 1 mm. 

3.2. Effect of thickness of FRP reinforcement  

It was found that the greater the number of reinforcement layers, the lower the SIF. 

A similar correlation of SIF with thickness of FRP reinforcement was revealed by Wang et 

al. [33] for rectangular plates. Hence, the number of reinforcement layers should be de-

cided based on the reduction in SIF required, as it would impart dead weight and cost. 

Figure 6 shows the reduction behavior of SIF with an increase in the number of reinforce-

ment layers for a crack having its center at the saddle position. Similarly, Figure 7 shows 

the same for a crack at the crown position. For cracks at both locations, the reduction of 

SIF at the crack tip was 4–12 % per millimeter of CFRP reinforcement.  

  

(a) (b) 

Figure 6. SIF variation due to FRP reinforcement (for a crack at saddle position, major diameter = 10 

mm, minor diameter = 5 mm, reinforcement = CFRP oriented orthogonal to weld, mechanical prop-

erties [29] ): (a) SIF variation along the crack; (b) SIF at the crack tip. 

  

(a) (b) 
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Figure 7. SIF variation due to FRP reinforcement (for a crack at crown position, major diameter = 10 

mm, minor diameter = 5 mm, reinforcement = CFRP oriented orthogonal to weld, mechanical prop-

erties [29] ): (a) SIF variation along the crack; (b) SIF at the crack tip. 

 4. Conclusion: 

Crack propagation at the weld toe of a tubular KT-joint has been studied using frac-

ture analysis. A semi-elliptical crack was introduced, and the effect of crack size, position, 

and fiber reinforced polymer (FRP) reinforcement on stress intensity factor (SIF) was in-

vestigated. An increase in the size of the crack was found to increase the SIF. It was re-

vealed that the magnitude of SIF depends on the location. SIF was maximum at the point 

where stress was maximum. Hence, the knowledge of a joint's stress behavior is vital for 

assessing the criticality of a crack in joints. The simulation proved the capability of FRP 

reinforcement for reducing the SIF at the crack and mitigating crack propagation. Empir-

ical modeling of the SIF in FRP-reinforced tubular joints with a crack will benefit quick 

assessment. Experimental verification of these findings and investigation of joints under 

combined loads can be carried out in the future.  
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