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Abstract: Radiative Transfer Models (RTMs) are one of the major building blocks of remote sensing 

data analysis that are widely used for various tasks such as atmospheric correction of satellite im-

agery. Although high-fidelity physical RTMs like MODTRAN are considered to offer the best pos-

sible modeling of atmospheric procedures, they are computationally demanding and require a lot 

of parameters that should be tuned by an expert. Therefore, there is a need for surrogate models for 

the physical RTM codes that can mitigate these drawbacks while offering an acceptable perfor-

mance. This study aimed to suggest surrogate models for the MODTRAN RTM using deep learning 

models. For this purpose, the top of atmosphere (TOA) spectra calculated by the MODTRAN code 

as well as the bottom of atmosphere (BOA) input spectra and other atmospheric parameters like 

temperature and water vapor content observations were collected and used as the training dataset. 

Two deep learning regression models, including a fully connected network (FCN) and an auto-en-

coder (AE) as well as a random forest (RF) machine learning regression model were trained. The 

results of these models were assessed using the three evaluation metrics root mean squared error 

(RMSE), regression coefficient (R2), and spectral angle mapper (SAM). The evaluations indicated 

that the AE offered the best performance in all the metrics with RMSE, R2, and SAM scores of 0.0087, 

0.9906, and 1.4295 degrees respectively in the best-case scenarios. These results showed that the 

deep learning models can better reproduce results by the high-fidelity physical RTMs. 

Keywords: Machine Learning; Deep Learning; Regression; Multispectral Remote Sensing; Radiative 

Transfer Model; Surrogate Model. 

 

1. Introduction 

Radiative transfer models (RTMs) are not only fundamental in the radiometric cali-

bration of satellite sensors, but they are also extensively used for the atmospheric correc-

tion of satellite data. These models solve the differential equation but are computationally 

demanding [1]. There is a need for surrogate models based on deep learning that can mit-

igate this issue while offering accurate outputs.  

Deep learning is widely used in a wide variety of remote sensing applications such 

as change detection [2] and binary segmentation [3]. There have been multiple cases of 

emulating RTMs using deep learning. Pal et al. [4] suggested a surrogate model for the 

shortwave and longwave radiative transfer model SP-E3SM based on deep neural net-

works (DNNs). Their model achieved 8-10 times faster run times while having an accu-

racy of 90-95%. Lagerquist et al. [5] emulated the shortwave Rapid Radiative Transfer 
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Model (RRTM) with a UNet++ model. Their models proved to be about 104 times faster 

than the original model. Aiming to find a faster way of running the Bayesian Atmospheric 

Radiative Transfer (BART) code, Himes et al. [6] used a neural network approach. The 

results demonstrated that the emulator was about 80-180 times faster than BART when 

run on GPU. Yao et al. [7] compared different deep learning models. Bidirectional Recur-

rent Neural Networks (BRNNs) were found to offer the best performance. 

Although there are other similar studies [8], this research is the first to leverage the 

extensive dataset from the RadCalNet portal [9] to develop an emulator for the MOD-

TRAN RTM. Fully connected and autoencoder deep learning models are developed using 

this dataset and compared to the random forest machine learning model.  

2. Dataset 

In 2014, the Infrared Visible Optical Sensors (IVOS) and the Committee on Earth Ob-

servation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) intro-

duced the international calibration network RadCalNet [9]. This network comprises four 

international calibration test sites that offer top-of-atmosphere (TOA) reflectance data in the 

nadir view, collected at 30-minute intervals between 9 a.m. and 3 p.m. local standard time. 

This data is available at 10 nm intervals, ranging from 400 nm to 2500 nm of the electromag-

netic spectrum. These measurements are derived from ground-level nadir-view reflectance 

readings, coupled with six atmospheric parameters including surface pressure, tempera-

ture, columnar water vapor, columnar ozone, aerosol optical depth, and the angstrom coef-

ficient. To standardize the data processing, a correction to TOA values is applied uniformly 

across all sites using the Modtran RTM.  

GONA and RVUS sites in RadCalNet have the most number of measurements thus 

only these two pseudo-invariant sites have been used in this study. GONA calibration site 

is located in Gobabeb, Namibia, and is characterized by a sandy desert terrain, covering a 

circular region with a 30-meter radius. There have been 13385 measurement pairs of surface 

reflectance spectrum and atmospheric parameters on this site since 2015. The spectral range 

is from 400nm to 2300nm with a gap between 1820nm and 1910nm bands. 

RVUS site is located in Railroad Valley a desert region in the state of Nevada, USA, 

which is surrounded by mountains to the east and west. This area is generally flat with less 

than 3 meters of elevation variation and spans 1 km by 1 km. So far, 17348 measurements of 

BOA spectrum and atmospheric parameters have been collected on this site. The spectral 

range is from 400nm to 2300nm with a gap between 1810nm and 1960nm bands.  

 

Figure 1. Fully connected network architecture. 
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Some of the observations in the datasets were noisy and needed to be filtered out as 

outliers. This was achieved by excluding every data sample outside the confidence level 

of three times the standard deviation. Six other parameters have been concatenated with 

the six atmospheric parameters to make a complementary feature set of 12 elements. These 

six parameters include measurement time and date, aerosol type, azimuth and zenith an-

gles of the sun, and earth to sun distance. A major part of the preprocessing was to rescale 

the 12 complementary parameters in the range of 0 and 1 to facilitate the training of mod-

els. The final step was to randomly select 70 percent of the data samples for training and 

the remaining for testing. 

3. Methodology 

The main goal of this study is to develop a surrogate multivariate regression model 

that can take the measured BOA spectra along with the complementary parameters as 

inputs and estimate the TOA spectra. Atmospheric radiative processes that MODTRAN 

calculates have a completely non-linear nature, more sophisticated machine learning 

models are required to reproduce MODTRAN outputs. That is the reason only random 

forest was employed as a machine learning model in this study which is widely consid-

ered one of the best regression models. Thus, fully connected network (FCN) and convo-

lutional Autoencoder (AE) deep learning models along with a random forest model have 

been trained separately on the datasets gathered from the two calibration sites. 

3.1. Fully Connected Network (FCN) 

The fully connected model presented in this study is designed to take an input vector 

of 222 dimensions. This vector is the concatenation of the BOA spectrum (210 variables) 

with the corresponding complementary parameters (12 variables). The outputs of the 

model have a dimension of 210, equal to the number of TOA spectral bands. As can be 

seen in Figure 1, the model architecture follows an encoder-decoder structure, suitable for 

problems with matching input and output dimensions. The number of layers and neurons 

in this model are adjusted in a way that closely resembles the architecture of the other 

deep learning model, allowing for a fair comparison of the performance of these two ar-

chitectures. 

 

Figure 2. Convolutional autoencoder network architecture. 

The ReLU has been chosen as the activation function for the hidden layers which is 

widely used in deep networks. Additionally, since the problem is of regression type, the 

activation function for the last layer has been chosen as Linear. For training the model, the 
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Adam optimizer with a learning rate of 0.0003 has been used. Finally, the model is com-

piled with the mean square error (MSE) loss function, suitable for regression problems. 

3.2. Autoencoder 

An autoencoder (AE) is designed to extract representative features from input vec-

tors based on two fundamental components: the encoder and the decoder. The key point 

in these networks is that the input layer dimension should match the output layer dimen-

sion. Initially, the encoder part performs feature extraction on input data and reduces their 

dimensions. Then, the decoder part maps the features back to the output. Figure 2 illus-

trates the architecture of the autoencoder network developed in this study. 

The maxpooling operator just takes the largest value in its search window and omits 

other information. Therefore, to prevent the loss of some of the complementary parame-

ters, the concatenation approach has not been used in this model. Instead, the 12 comple-

mentary parameters have been fed to the model in the bottleneck section after the encod-

ing of BOA spectra. The activation functions, loss function, and optimizer are the same as 

in the previous model, but in this model, a learning rate of 0.0001 has been adopted. 

4. Results and Discussion 

To assess the accuracy of trained models, root mean square error (RMSE) and the 

coefficient of determination (R2) metrics have been utilized. Since the regression problem 

in this study produces output vectors, the spectral angle mapper (SAM) metric can indi-

cate the deviation of the predictions of surrogate models from the MODTRAN outputs in 

degree units. The formula for the SAM metric is as follows, where 𝑌 and �̂� represent the 

actual and predicted spectra, respectively. 

𝑆𝐴𝑀 =  arccos(
𝑌. �̂�

|𝑌||�̂�|
) (1) 

 

Figure 3. The visual results of the GONA dataset: a) best prediction of the models, b)worst predic-

tion of the models, c) residuals’ range (light grey is the minimum and maximum values, dark grey 

is the standard deviation, and red line is the mean values). 
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Table 1. Quantitative results of the surrogate modeling for the GONA ans RVUS sites. 

RVUS GONA  
2R RMSE SAM (degree) 2R RMSE SAM (degree) Models 

0.9469 0.0212 2.6254 0.9507 0.0207 2.7302 RF 

0.9719 0.0150 2.6605 0.9332 0.0243 4.1760 FC 

0.9906 0.0087 1.4295 0.9823 0.0116 1.9832 AE 

4.1.  GONA Site Results 

The quantitative results of the surrogate modeling for the GONA site are reported in 

Table 1, presenting the values of evaluation metrics for 4011 testing spectra. Moreover,   

Figure 3 illustrates the visual results. The autoencoder had the best performance in all the 

metrics in the GONA dataset with R2, RMSE, and SAM scores of 0.9823, 0.0116, and 1.9832 

degrees respectively.  

The second highest scores belonged to the random forest model while the fully con-

nected model achieved the worst outputs with an RMSE of 0.0243. It should be noted that 

the RMSEs in this study are in the unit of surface reflectance. The visual results illustrated 

in Figure 3 reflect the same quantitative results. The residuals’ range was the narrowest 

in the autoencoder and random forest had smoother means compared to the fully con-

nected model. 

4.2.  RVUS Site Results 

The quantitative results of the surrogate modeling for the RVUS site are reported in 

Table 1, presenting the values of evaluation metrics for 5205 testing spectra. Moreover,   

Figure 4 illustrates the visual results. Also in the RVUS dataset, the autoencoder achieved 

the best results with R2, RMSE, and SAM scores of 0.9906, 0.0097, and 1.4295 degrees.  

 

Figure 4. The visual results of the RVUS dataset: a) best prediction of the models, b)worst prediction 

of the models, c) residuals’ range (light grey is the minimum and maximum values, dark grey is the 

standard deviation, and red line is the mean values) 
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The fully connected model was better than random forest in R2 and RMSE scores 

(0.9716 and 0.0150 respectively) however, random forest had a slightly higher SAM score 

(2.6254 degrees) indicating its better ability to model the shape of the spectrum. The over-

all smoothest residuals’ mean belonged to the random forest model although the error 

range was the largest. The autoencoder has the narrowest residuals’ range but the means 

were slightly noisy. 

5. Conclusion 

Developing surrogate models for computationally demanding physical radiative 

transfer models is of great importance in reducing computation costs. This study aimed 

to accomplish this task by using deep learning models to find a link between the inputs 

and outputs of MODTRAN RTM. For this purpose, training datasets were gathered from 

the GONA and RVUS calibration sites of the RadCalNet portal. Fully connected and au-

toencoder deep learning models were employed to solve the regression problem. Moreo-

ver, a random forest model was used for comparison. The results indicated that the auto-

encoder model had the best performance in both datasets with RMSE, R2, and SAM scores 

of 0.0087, 0.9906, and 1.4295 degrees respectively in the best-case scenarios. Furthermore, 

random forest outperformed the fully connected model in the GONA dataset in all the 

evaluation metrics while the fully connected model had better RMSE and R2 scores in the 

RVUS dataset. Although other studies have found a regression method as appropriate [8], 

the main contribution of this research is the utilization of RadCalNet dataset. 
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