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Abstract: Biotechnology offers the potential for selective depolymerization of natural and synthetic 

fibers, isolation of components or recovery of monomers. This progress solves the problems associ-

ated with the regeneration of monomers from synthetic fiber blends, especially when contaminated 

or mixed fibers are involved. In addition, the recycling of used fiber products into higher value 

products not only keeps waste out of landfills, but also creates economic opportunities and reduces 

the need to produce new synthetic fibers. Synthetic fibers can be recovered by mechanical or chem-

ical recycling, but biotechnological solutions with enzymes offer a better environmentally friendly 

alternative to harsh chemicals by selectively breaking down certain chemical bonds in polymers to 

obtain purer monomeric building blocks. Efficient biotechnological recycling, however, depends on 

the specific polymer, as different enzymes, microbial colonies, fungal hyphae, etc. can process dif-

ferent man-made fibers. Challenges arise with any type of fiber recovery, including enzymatic deg-

radation, when suitable enzymes have not yet been discovered or when fiber blends impede acces-

sibility and efficiency. This short review provides an overview of the possibilities of biotechnological 

solutions for synthetic fiber recovery. 
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1. Introduction 

As environmental awareness of sustainable practices increases, the textile industry is 

under increasing pressure to reduce its environmental impact. The widespread use of 

synthetic fibers, while contributing to diverse and affordable textile products, has led to a 

growing problem of waste accumulation due to their slow degradation [1,2]. Textile fiber 

recycling includes mechanical recycling, chemical recycling including pyrolysis, enzy-

matic hydrolysis, hydrothermal technology, ammonolysis, gasification, glycolysis, and 

decolorization to reduce the amount of textile waste that is incinerated or landfilled. 

Chemical treatment is an effective method of textile recycling in which chemicals are 

added to break down the complex textile polymer into smaller polymer molecules. Today, 

chemical recycling is a popular method for degrading polymers, solution-purified poly-

mers, oligomers, monomers, or raw materials in gaseous or liquid form, all of which are 

products of chemical textile recycling. Re-polymerization can be used to renew polymers 

such as oligomers and monomers even in textile waste. In contrast, mechanical textile re-

cycling has been used since the beginning of the industrial revolution. It is one of the 

cheapest and simplest recycling methods [3-5]. However, not all of these processes are 

suitable for recycling synthetic fibers in a sustainable manner. In response, biotechnolog-

ical approaches have emerged as promising alternatives for recycling and degradation 

synthetic fibers. The use of microorganisms that degrade synthetic fibers in bioreactors is 
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a viable approach for large-scale recycling [6,7]. This short review focuses on mechanical 

and biotechnological solutions (see Figure 1). 

 

Figure 1. Synthetic fiber recycling options. 

For example, Marqués-Calvo et al. described the results of enzymatic and microbial 

biodegradation of poly(ethylene terephthalate) (PET) and PET copolyester plastics using 

two commercial fungal lipases and two bacteria from environmental isolates on a labora-

tory basis [8]. On the other hand, Mohanan et al. described the microbial and enzymatic 

degradation of synthetic plastics used in the textile industry [9]. Incorporating biotechno-

logical solutions into current recycling approaches that promote environmental conserva-

tion and enable the transition to a circular economy and regulatory aspects [10]. This short 

review explores the potential of biotechnological solutions in synthetic fiber recycling. It 

addresses the challenges and highlights applications that hold the key to a more sustain-

able textile economy. It addresses enzymatic degradation, a fundamental facet of biocatal-

ysis, and demonstrates the potential of enzymes for targeted degradation of various syn-

thetic fibers with minimal by-product generation.  

2. Mechanical recycling processes and limitations 

Mechanical recycling processes such as mechanical sorting, mechanical shredding 

and melt spinning are central to the sustainable management of man-made fibers and 

provide cost-effective and widely used approaches to various stages of the recycling pro-

cess. But these methods of recycling also have limitations. The mechanical recycling of 

textiles leads to a reduction in quality due to the reduction in fiber length and this is re-

flected in the limited possibilities of use on the end market. The microscopic image in Fig. 

2 shows a textile fabric made from recycled polyester (PES) fibers, presumably mechani-

cally recycled and consisting of 20% polyester and 80% cotton (see Fig. 2a, shopping bag, 

Comco Plast CCC GmbH, Germany). Images were taken using a digital microscope 

(Keyence, VHX-970FN, Neu-Isenburg, Germany). The fibers in the warp threads are rela-

tively short and the surface of the yarn is uneven, with individual fibers protruding (see 

Fig. 2b). 
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Figure 2. Microscopic images of 20% polyester/80% cotton fabric (a) and warp yarn (yellow and 

black polyester fibers cover the white cotton fibers) (b). 

Mechanical sorting is an important method that uses equipment such as conveyors 

and air sifters to efficiently separate synthetic fibers from other materials based on physi-

cal characteristics such as size, density, or shape. It excels with large materials, but can be 

limited when dealing with similar properties, potentially leading to contamination. Me-

chanical shredding, on the other hand, plays a key role in reducing material size and pre-

paring it for further processing, making it more manageable and compatible with subse-

quent recycling steps [11-13]. Mechanical sorting struggles with similar materials and 

risks contamination; sorting accuracy is critical. Mechanical shredding raises concerns 

about fiber damage and energy consumption, requiring improvements in sustainability. 

Melt spinning is energy intensive and suitable for specific synthetic fibers, limiting its 

broader applicability [14].  

3. Biotechnological Perspectives for Synthetic Fiber Recycling  

Biotechnological implementations offer a range of innovative solutions to improve 

synthetic fiber recycling. These approaches use the natural capabilities of microorganisms 

and enzymes to degrade fibers, generate valuable products and contribute to a more sus-

tainable and circular textile industry. Ongoing research and development in this area has 

the potential to revolutionize the management of synthetic fiber waste and promote envi-

ronmental protection [15]. 

3.1. Enzymatic degradation 

Enzymatic degradation of synthetic fibers occurs through the directed action of en-

zymes that target specific molecular bonds within the polymer structure [16]. Enzymes 

such as proteases, lipases, and cellulases have substrate specificity that enables them to 

cleave peptide, ester, and glycoside bonds, respectively. Esterases, for example, have been 

successful in degrading polyester-based synthetic fibers, while other enzymes target dif-

ferent types of synthetic fibers. Enzymatic hydrolysis disrupts the molecular structure of 

the fiber, leading to the formation of shorter oligomers and eventually monomers that can 

be assimilated by microorganisms or used as starting material for biochemical processes 

[17,18]. Enzymatic degradation of synthetic fibers not only helps in waste management, 

but also opens up opportunities for circular economy. The resulting degradation prod-

ucts, such as monomers and oligomers, can serve as feedstocks for biopolymers, biofuels 

and other value-added products, reducing dependence on fossil resources. In addition, 

enzymatic degradation helps reduce the environmental impact associated with the accu-

mulation of synthetic fiber waste [19-21]. Bei et al. investigated the enzymatic degradabil-

ity of the three polyester types using cutinase and found that the biological degradability 

depends on the spacing of the ester groups and the crystallinity. In addition, the ratio of 
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hydrophilicity/hydrophobicity of the polyester surface is crucial for the enzymatic degra-

dability. 

 

Figure 3. Scanning electron microscope images of poly(ethylene succinate) (PES) polyester films 

degraded for 2, 4, and 10 hours. Adapted from Ref. [22], originally published under a CC-BY license. 

Navone et al. studied the selective digestion of fiber composites of wool-polyester 

blends using an enzymatic approach by applying a keratinase in a two-step process with 

the addition of a reducing agent, and the undigested polyester fibers were recovered. 

Spectroscopic and mechanical analysis of the recovered synthetic fibers confirmed that the 

enzymatic treatment had no significant effect on the properties of the polyester compared 

to untreated samples [23]. Egan et al. report on enzymatic textile fiber separation for sus-

tainable waste processing [24]. Tiso et al. investigate the sequential conversion of polyeth-

ylene terephthalate (PET) into two types of bioplastics, a medium chain length polyhy-

droxyalkanoate (PHA) and a novel bio-based poly(amideurethane) (Bio-PU), using a ter-

ephthalate-degrading Pseudomonas umsongensis GO16 [25]. Limitations of this enzymatic 

recycling method for synthetic fibers may include the specificity of enzymes, making them 

less effective on certain types of synthetic fibers. Additionally, the efficiency of enzymatic 

degradation could depend on the specific synthetic fiber and process conditions, poten-

tially limiting its applicability. 

3.2. Microbial biodegradation 

Microbial biodegradation uses the natural ability of microorganisms such as bacteria 

and fungi to break down complex synthetic polymers into simpler compounds. Several 

microorganisms have been identified that possess enzymes that can degrade synthetic fi-

bers. For example, certain bacteria can produce enzymes such as esterases and lipases that 

target the ester bonds present in polyester fibers. Researchers have also explored the po-

tential of bioaugmentation and biostimulation techniques. Bioaugmentation involves the 

introduction of specific microorganisms into the environment, while biostimulation aims 

to increase the activity of existing microorganisms by providing nutrients or other 

growth-promoting factors. These approaches aim to accelerate the degradation process 

and increase the efficiency of fiber degradation [26-28]. Wei and Zimmermann focused on 

microbial biocatalysts involved in the degradation of the synthetic plastics polyethylene, 

polystyrene, polyurethane, and polyethylene terephthalate (PET) [29]. Advances in ge-

netic engineering allow the modification of microorganisms to enhance their ability to de-

grade synthetic fibers. By introducing specific genes or pathways, scientists can tailor mi-

croorganisms to efficiently break down complex fiber structures and produce valuable 

end products. Schiros et al. reported on the genetic engineering of microorganisms for 

bio-fabrication, green chemical processing of raw materials, and green manufacturing 

processes for the textile industry. They provided an overview of future perspectives for 

sustainable bio-textile production, focusing on the use of waste streams to improve both 

recyclability and process economics [30]. Zimmermann reviewed the biocatalytic recy-

cling of polyethylene terephthalate plastic [31]. Yoshida et al. showed that the new species 

Ideonella sakaiensis degrades plastic using two enzymes to hydrolyze poly(ethylene tereph-

thalate) PET. Bacteria isolated outside of a bottle recycling facility to degrade and metab-

olize plastic [32]. Conventional synthetic fibers such as polyester, nylon and acrylic are 
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derived from petroleum-based resources and end up in landfills or the environment, 

where they can persist for years and contribute to environmental pollution [33,34]. Bio-

chemical recycling uses biological processes to break down synthetic fibers into their in-

dividual molecules, which can then be used to make new fibers or other materials. The 

conversion of depolymerized synthetic fiber monomers into valuable chemicals and ma-

terials can be facilitated by biotechnological processes. These monomers can be used as 

feedstocks to make new polymers, reducing the need for virgin resources. This approach 

can help close the loop in synthetic fiber production and minimize waste generation 

[35,36]. The limitations of microbial biodegradation and enzymatic methods for synthetic 

fiber recycling include potential specificity of microorganisms and enzymes, as they may 

not be equally effective on all types of synthetic fibers. Additionally, the efficiency of the 

degradation process is depending on the specific fiber and process conditions.  

4. Current Challenges and Limitations  

While biotechnological solutions are promising, several challenges remain. Identify-

ing suitable enzymes or microbial strains for the wide range of synthetic fibers remains a 

daunting task. Optimizing degradation rates, as well as understanding potential by-prod-

ucts and their environmental impact, requires careful research. In addition, the scalability 

of biotechnological processes to meet industrial demands requires careful consideration 

[37,38]. This field is still in its infancy and faces several challenges. Enzymatic degradation 

of synthetic fibers can be slow and may not result in a sufficient amount of high-quality 

building blocks for the production of new fibers. Synthetic fibers come in different formu-

lations, and developing enzymes that can effectively degrade all types of synthetic fibers 

is challenging because of the different chemical structures. Degradation can produce con-

taminants or fragments that are difficult to separate from the degraded building blocks, 

compromising the quality of the recycled material. While laboratory-scale trials are prom-

ising, scaling up enzymatic processes to an industrial scale can be complex and costly [39-

41]. The increasing use of synthetic fibers in textiles has led to serious environmental con-

cerns because they are not biodegradable. Conventional recycling methods based on me-

chanical and chemical processes are inadequate for the increasing amount of synthetic 

fiber waste. Biotechnological approaches have emerged as a promising solution for sus-

tainable and effective recycling.  

5. Conclusions 

This short review discusses recent biotechnological advances in the treatment of syn-

thetic fiber waste and the potential and limitations of mechanical and biotechnological 

solutions. Biodegradation is emphasized, highlighting the potential of enzymes for tar-

geted degradation of synthetic fibers with minimal by-product formation. The integration 

of microbial consortia and genetically modified microorganisms offers innovative strate-

gies to convert recalcitrant synthetic fibers into valuable resources. The use of fiber-de-

grading microorganisms in bioreactors enables large-scale recycling. Incorporating bio-

technology into recycling concepts requires a holistic assessment that considers environ-

mental protection and regulatory compliance. The potential of biotechnology is one of the 

most promising solutions for recycling synthetic fibers, supporting environmental sus-

tainability and the transition to a circular economy. 
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