



# A methodological approach to identify thermal anomalies hotspots misclassified as fire pixels in Fire Radiative Power (FRP) products

#### Filipponi Federico, Mercatini Alessandro

Italian Institute for Environmental Protection and Research (ISPRA)

federico.filipponi@isprambiente.it

The 5th International Electronic Conference on Remote Sensing (ECRS) Virtual event, 7-21/11/2023

#### Abstract

Thermal anomalies detected by Earth observation satellites have been widely used to identify active fires, even though with a high percentage of misclassified fire pixels. A total of about 75000 Fire Radiative Power (FRP) pixels have been spatially and temporally combined with EFFIS Burned Areas Database, distributed under the Copernicus Emergency Management Service, in order to identify thermal anomalies hotspots misclassified as fire pixels. The proposed approach uses a cluster analysis to partition FRP pixels dataset into discrete subsets, based on defined distance measures like the spatial distance of the pixel centroids and the temporal frequencies. Later, zonal statistics has been performed in order to evaluate fractional land cover within each identified hotspot. Results demonstrate that misclassified large surfaces, like industrial areas, can be identified from both spatial and temporal patterns, while other FRP false alarms are smaller in size.



## **Materials**

- FRP-NRTD Fire Radiative Power Near-Real Time Database
  - Collected datasets

| Satellite        | Sensor | Resolution | URL                                  |  |
|------------------|--------|------------|--------------------------------------|--|
| Aqua (EOS PM-1)  | MODIS  | 1000 m     | https://firms.modaps.eosdis.nasa.gov |  |
| Terra (EOA AM-1) | MODIS  | 1000 m     | https://firms.modaps.eosdis.nasa.gov |  |
| SNPP             | VIIRS  | 375 m      | https://firms.modaps.eosdis.nasa.gov |  |
| Sentinel-3       | SLSTR  | 1000 m     | https://www.eumetsat.int/S3-NRT-FRP  |  |

BAD-ITE – Burned Area Database – Italian Terrestrial Ecosystems

https://groupware.sinanet.isprambiente.it/prodotti-operativi-di-sorveglianza-ambientale/library/disturbanceagents/wildfires/burnt-areas-italian-terrestrial-ecosystem

CLC\_bb 2018 – Corine Land Cover Backbone

https://land.copernicus.eu/en/products/clc-backbone



### **Methods: flowchart**





## Sensitivity analysis

- FRP products in Near Real-Time (NRT) mode may have a spatial displacement, due to approximated estimates of azimuth angle and satellite positioning, spatially collocating FRP points outside actual burned area polygons
- Burned area polygons may have been mapped using a change detection method from satellite imageries acquired few days after the fire took place, resulting in temporal information lagged from actual fire date
- Sensitivity analysis was performed to find best spatial buffer radius (range 0-2000 m) and time lag (range 0-96 h) values





## **FRP points labelling**

| Class                 | Description                                                     | Count | Percentage |
|-----------------------|-----------------------------------------------------------------|-------|------------|
| FRP <sub>-s</sub>     | Outside burned area polygon                                     | 42670 | 83.61      |
| FRP <sub>+S-TL</sub>  | Inside burned area polygon, outside fire event time lag         | 329   | 0.64       |
| FRP <sub>+S+T</sub>   | Inside burned area polygon, within fire event time range        | 2397  | 4.70       |
| FRP <sub>+S+TL</sub>  | Inside burned area polygon, within fire event time lag          | 1590  | 3.12       |
| FRP <sub>+SB-TL</sub> | Inside burned area buffer polygon, outside fire event time lag  | 1590  | 1.17       |
| FRP <sub>+SB+T</sub>  | Inside burned area buffer polygon, within fire event time range | 1510  | 2.96       |
| FRP <sub>+SB+TL</sub> | Inside burned area buffer polygon, within fire event time lag   | 1939  | 3.80       |

First step used for clustering analysis consists in labelling each of the about 75000 FRP pixel points with a class. Space is the leading dimension used for FRP points labelling, each point is first checked as spatially residing within burned areas. Later, time information of burned areas, available from fields named 'FIREDATE' and 'LASTUPDATE' in BAD-ITE, is used to identify FRP points temporally occurred during each mapped fire event.





### Thermal anomalies hotspots – Convex hulls analysis



FRP point
Convex hulls
Thermal\_anomalies\_hotspots
Land Cover
Sealed
Woody needle leaved trees
Woody Broadleaved deciduous trees
Woody Broadleaved evergreen trees
Low-growing woody
Permanent herbaceous
Periodically herbaceous

For each variable, a threshold value was selected in order to identify spatially points clusters that be can considered thermal anomalies hotspots, misclassified as fire pixels. For each points cluster, corresponding spatial the been hull has convex generated. Only areas with more than 3 overlapping convex hull have been used to final hotspots generate polygons.







Identified hotspots, although they are a small number and correspond to about 165 km<sup>2</sup> (0.05% of Italy national territory), allow the removal of about 40% misclassified FRP points The 5th International Electronic Conference on Remote Sensing (ECRS)





| Temporal   | FRP    | Number of                  | Number of removed          | Percentage of removed      |  |
|------------|--------|----------------------------|----------------------------|----------------------------|--|
| period     | points | misclassified FRP points   | misclassified FRP points   | misclassified FRP points   |  |
|            | number | (FRP-S FRP+S-TL FRP+SB-TL) | (FRP-S FRP+S-TL FRP+SB-TL) | (FRP-S FRP+S-TL FRP+SB-TL) |  |
| 01/01/2022 | E1022  | 42507                      | 16428                      | 37.68                      |  |
| 31/12/2022 | 51033  | 43597                      |                            |                            |  |
| 01/01/2022 | 27722  | 27495                      | 11627                      | 42.24                      |  |
| 31/07/2022 | 32/32  | 27485                      | 11037                      | 42.34                      |  |
| 01/01/2023 | 22206  | 10017                      | 7686                       | 40.85                      |  |
| 31/07/2023 | 25380  | 1001/                      |                            |                            |  |

From spatial intersection between burned area polygons and FRP points, with corresponding spatial buffer and time lag, 79.01% of burned areas have a FRP point sensed by satellites during fire event in 2022. Comparison exercise from January 2023 – July 2023 acquisitions resulted in 77.88% of corresponding points (77.67% from the same year period in 2022).





From a comparison with land cover classes, identified thermal anomalies hotspots are characterized by high cover percentage of sealed surface. From a visual inspection of geolocation of the hotspots, it has been possible to observe that they are mainly located in correspondence of industrial areas, metallurgical industries, cement factories, warehouses, and volcanoes.

