Molybdenum Trioxide Nanoparticles Enhance Drought Tolerance in Pea Plants

Rūta Sutulienė ^{1,*}, Aušra Brazaitytė ¹, and Giedrė Samuolienė¹

Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Kaunas str. 30, Babtai, LT-54333, Lithuania. Correspondence: ruta.sutuliene@lammc.lt

from the air to the soil with the help of symbiotic bacteria on the root nodules. A sufficient amount of molybdenum in the soil is significant for nitrogen fixation. The aim of this research was to investigate the effects of an aqueous suspension of molybdenum trioxide nanoparticles (MoO₃ NPs) on the antioxidant system, mineral composition, and yield of droughtaffected peas (*Pisum sativum* L. cultivar 'Respect').

METHODS

The experiments were conducted using potted plants in a greenhouse with natural daylight. Pea plants were treated with different concentrations (0, 12.5, 25, and 50 ppm) of MoO₃ NPs by watering and spraying and were subjected to ten days of drought. Drought was initiated by maintaining substrate moisture at 30% while standard conditions were 80%. The researchers evaluated the impact of MoO₃ NPs and drought on the growth of the plants, the activity of enzymes (CAT, SOD, APX, GR, GPX), and the level of non-enzymatic antioxidants (FRAP, DPPH, ABTS, TPC) and stress biomarkers (H₂O₂, MDA amount). Elemental analysis was performed using the leaves, stems, and roots.

of drought-stressed pea plants.

Figure 1. Size distribution of MoO_3 nanoparticles in DI water.

- MoO₃ NPs suspension positively affected plant morphological parameters determined by the effective reduction of oxidative biomarkers, increased total phenolics, and non-enzymatic antioxidant activity under drought conditions.
- MoO₃ NPs had an effect in enhancing the activity of CAT, APX, SOD, and GPX but reducing the activity of GR under both drought and normal conditions.
- The highest accumulation of Mo was found in pea plants when they were watered with 50 ppm MoO3 NPs suspension.
- Comparing the application methods, MoO_3 NPs through the roots have a more substantial effect on peas.

1 Picture: Vegetation pots in greenhouse.

2019	Tempera	ature, C ^o	Humi	dity, %		
	Day	Night	Day	Night		
Before drought	24.2	14.4	54.1	75.3		
During drought	26.2	17	50.1	73.2		

Table 3 The impact of MoO₃ NPs (12,5; 25; 50 ppm) on P. sativum L. grown in the substrate with sufficient (SM 80%) and insufficient (SM 30%) moisture is expressed as a percentage change (%) compared to the control (for SM 80% control means plants grown under SM 80% and NPs untreated; SM 30% control means drought affected but NPs untreated plants) in the heat map. Statistically, significant differences are marked in bold

	SM 80%				SM 30%							
Treatment MoO ₃	Watered		Sprayed		Watered		Sprayed					
NPs, ppm	12.5	25	50	12.5	25	50	12.5	25	50	12.5	25	50
lants height	6	21	25	7	5	17	10	18	40	4	10	24
eaf area	-3	15	25	-9	2	15	-7	-8	30	12	10	10
umber of noodles	40	320	560	40	20	140	-50	117	533	-17	117	183
ield	6	5	6	1	-12	7	11	26	80	3	15	64
BTS	-11	-5	2	-3	-8	4	60	67	105	43	65	70
PPH	5	27	36	6	-7	13	59	53	145	36	76	81
PC	-20	4	4	-23	-15	1	20	28	37	-1	22	15
RAP	117	141	202	111	146	190	231	241	242	55	100	142
I_2O_2	109	101	122	68	120	65	-8	-12	-20	-9	-12	-30
ſDA	18	-2	13	19	24	5	9	11	25	13	-1	-17
ĥR	-70	-59	-56	-33	-52	-62	-56	-57	-31	-88	-79	-71
θPX	161	76	28	110	142	168	-11	43	55	17	-2	56
PX	692	899	607	423	481	748	198	490	622	216	276	422
OD	25	65	19	5	24	35	-2	-15	17	-10	0	20
AT	-16	-19	-4	41	-10	-2	234	215	224	161	191	183
Io (leaves)	14	27	43	14	26	47	160	234	310	27	421	454
lo (stem)	10	34	34	29	44	46	201	205	215	114	122	136
Io (roots)	200	213	360	130	177	184	21	28	69	38	56	73

<u> </u>				
After drought	26.7	16.6	52.8	73.5

Table 1. Temperature and humidity in greenhouse during experiment.

CONCLUSION

 MoO_3 nanoparticles increased the resistance of pea plants to drought stress by boosting the antioxidant activity, which may have led to higher growth parameters and yield of pea plants.

Acknowledgments: R.S. is thankful to the Lithuanian Research Centre for Agriculture and Forestry for the opportunity to work with nanoparticles and for donated green pea "Respect" seeds. The authors are also grateful to Joana Bendoraitiene from the Kaunas University of Technology for measuring the size and zeta potential of nanoparticle suspension.