# Can early-stage detection of pathogens in plants be enlighted by luminescent nanoparticles?

Ana Brinca-Moreira<sup>1,2,3,4,\*</sup>, António José Fernandes<sup>1</sup>, Alexandre Faia Carvalho<sup>1</sup>, Teresa Monteiro<sup>1</sup>, Vincenzo Mondello<sup>4</sup>, Cátia Pinto<sup>2</sup>, Rita Branquinho<sup>3</sup>, Florence Fontaine<sup>4</sup>, Florinda Mendes Costa<sup>1</sup>

<sup>1</sup> i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal

- <sup>2</sup> Association SFCOLAB Collaborative Laboratory for Digital Innovation in Agriculture, 2560-312 Torres Vedras, Portugal
- <sup>3</sup> i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, 2829-516 Caparica, Portugal
- <sup>4</sup> USC INRAE 1488 RIBP, University of Reims Champagne-Ardenne, Campus Moulin de la Housse Bâtiment 18, 51100 Reims, France



One of the **main causes of vine** decline, threating the viability of viticulture

The undetermined latency period, in which the plants do not display visible external symptom.

### **Preventive Cultural Practices**

(Prunning techniques, wound protection methods, sanitation protocols in plant production processes)

### Diagnosis &

Monitoring methods

<sup>•</sup>E-mail: anabrinca@ua.pt

universidade de aveire heoria poiesis praxis

LightMyPath







Qualified personnel Molecula Prepared installations Serological

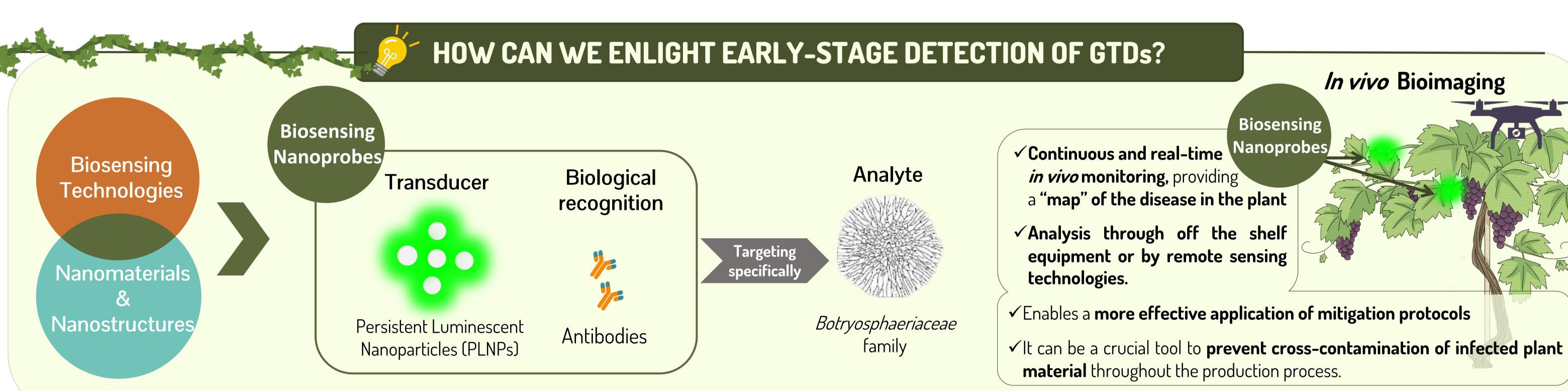
COLAB

Two of the main challenges are related to

> In nurseries, there is high crosscontamination risk of infected plant material throughout the production process.

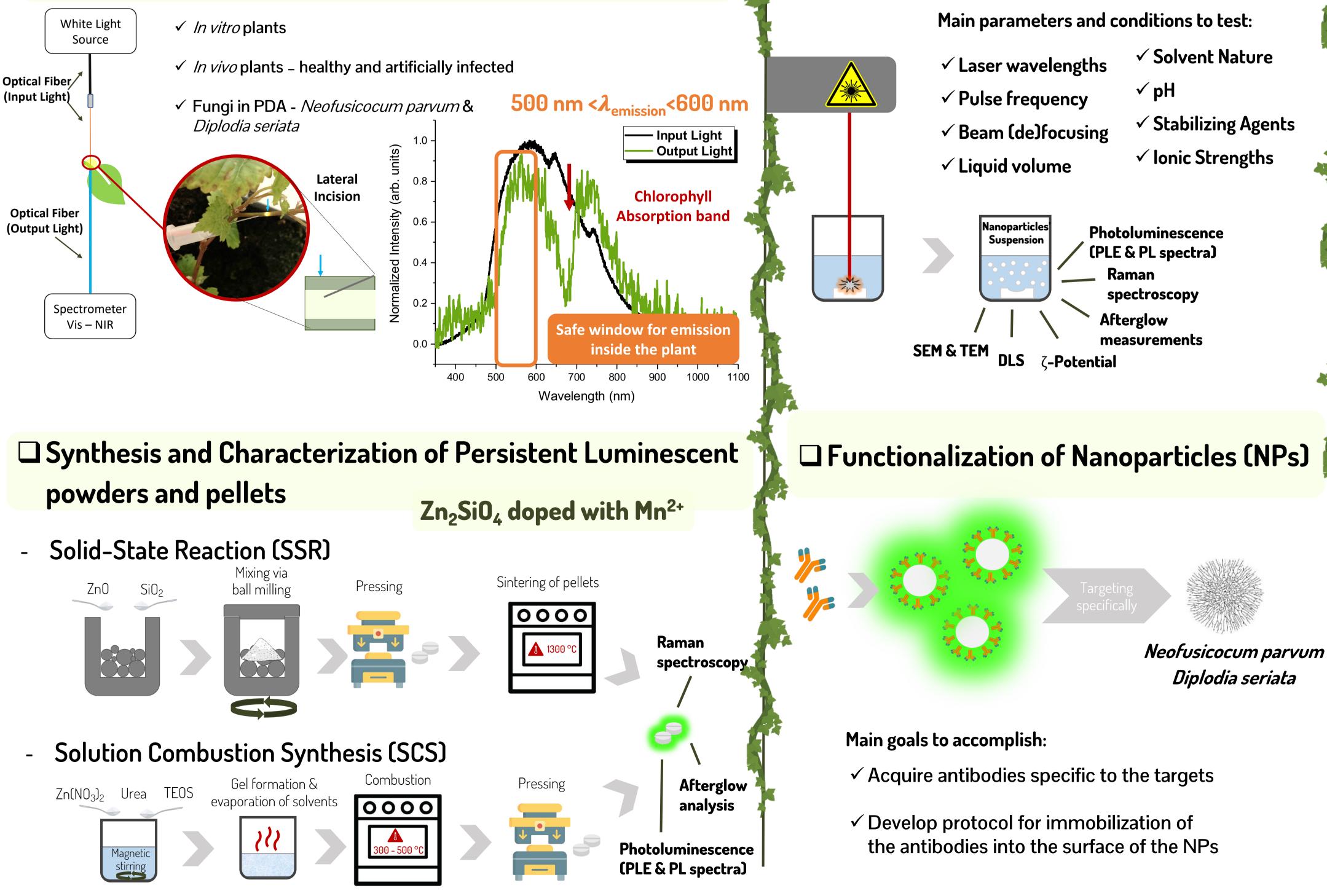
strategies of GTDs

Management


MOTIVATION

## **C** Post-Infection Mitigation protocols

(Remedial Surgery, application of active ingredients, re-grafting, trunk renewal, among others)


Expensive Remote External symptoms Sensing expression

Indistinguishable signal of abiotic stress





 Assessment of Grapevine's stem tissues Light **Transparency Window** 



**Preparation of Functional PLNPs** 

Preparation of Nanoparticles via Pulsed-Laser Ablation in Liquid (PLAL)

> ✓ Solvent Nature ✓ Stabilizing Agents ✓ Ionic Strengths

Application and evaluation of PLNPs in plants: *in vitro* and *in vivo* 

Application in *in vivo* 

Bioimaging

For evaluation of *in-planta* interactions:

- ✓ Mechanism of NPs' uptake (stem injection, leaf spraying)
- $\checkmark$  Transport of the NPs throughout the plant
- ✓ Toxicity of NPs towards the plant
- ✓ Specificity and sensibility of the NPs response

## Acknowledgements

The authors acknwoledge Vecteezy.com for offering the use of their pictures and the vine PNG designed by 588ku from https://pngtree.com/freepng/hand-painted-green-plantvine-purple-grape\_3835283.html?sol=downref&id=bef.

# TAKE HOME MESSAGE

✓ Detecting and diagnosing plant diseases promptly is crucial for effective crop management and food security, especially when dealing with deadly pathogens that **cause significant** losses and economic damage;

✓ Early-stage detection of pathogens is critical, and nanotechnology-based biosensing technologies can offer **promising solutions** for crop management, quality and viability analysis of infection in the plants;

Luminescent nanoparticles provide enhanced sensitivity and depth, making them valuable for bioimaging and real-time monitoring.

This work is being developed within the scope of the project i3N, UIBD/50025/2020 & UIDP/50025/2020 & UIDP/50025/2020 & LA/P/0037/2020, financed by national funds through the Portuguese Foundation for Science and Technology, FCT/MEC. Also, the authors acknowledge Chaire Maldive financially supported by Grand Reims and the RE-C05-i02: Interface Mission - Collaborative Laboratories Call 01/C05-i02/2022. Ana Brinca-Moreira acknowledges the PhD grant i3N – FCT UI/BD/152237/2021 and the funding from "Programa PESSOA COTUTELAS 2022" FCT/CampusFrance.

