Temporal change dynamics of the hydrometeorological conditions of upper Subarnarekha River Basin (SRB) using geospatial techniques

Farhin Tabassum* Akhouri Pramod Krishna

Department of Remote Sensing Birla Institute of Technology, Mesra India-835215

INTRODUCTION

- Water is a key resource for sustainable economic and social development. Hence it needs to be carefully monitored and managed.
- The effect of climate change has greater impact on the geohydrological system of river basin.
- These changes may be due to natural or anthropogenic activities, which may induce extreme aridity, excessive humidity, negligible rainfall, increased surface runoff, soil erosion, flood and drought.
- Watersheds are important units of which water and other natural resources can be strategically managed.

Assessment of spatio-temporal changes in LULC

Assessment of spatio-temporal changes in climatic parameters such as rainfall and temperature

Their impact on the variability of groundwater level

STUDY AREA

Fig-1: Location map of the upper Subarnarekha River basin with groundwater observation well points on SRTM 30 m DEM

- A. Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS)
- 1. Variable Temperature
- 2. Source https://ldas.gsfc.nasa.gov/fldas/
- 3. Time Span 2001 to 2020
- 4. Spatial Resolution 0.01° (Resampled to 0.05°)
- B. Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)
- 1. Variable Precipitation
- 2. Source https://data.chc.ucsb.edu/products/CHIRPS-2.0/
- 3. Time Span 2001 to 2020
- 4. Spatial Resolution 0.05°
- C. Ground water Level Data
- 1. Variable- Ground Water Level
- 2. Source- https://indiawris.gov.in/wris/#/groundWater
- 3. Time Span 2001 to 2020
- D. European Space Agency (ESA) Climate Change Initiative (CCI), Global land cover map
- 1. Source https://www.esa-landcover-cci.org/
- 2. Variable Land Use Land Cover
- 3. Time Span For the year 2001, 2010, and 2020
- 4. Spatial Resolution 300m

Data Used

METHODOLOGY

RESULTS

- There is a rapid increase in built up area, water bodies, barren land and shrub land.
- There is a decrease in vegetation and cropland.

23°0'0"N

Change 2001-2020										
LULC Class	Total Area (sq.km)	Total Area (sq.km)	Change in Area	% Change in Area						
Cropland	9882.92	9705.09	-177.83	-1.80						
Vegetation	3424.07	3377.36	-46.71	-1.36						
Grassland	282.70	279.51	-3.19	-1.13						
Urban areas	100.19	212.79	112.60	112.39						
Shrubland	201.35	288.31	86.96	43.19						
Water bodies	104.19	141.80	37.61	36.10						

Assessment of Land Use / Land Cover changes

Spatial and temporal distribution of Rainfall

Pre-Monsoon Rainfall

86°0'0"E

Pre-Monsoon Rainfall

N

(2001-2010) (2011-2020) A noticeable increase in both the • precipitation and temperature is evident 23°0'0"N in all seasons from 2011-2020 The map highlights consistently higher • rainfall in the south-eastern part of the Rainfall (mm) Rainfall (mm) basin <105 105 - 155 105 - 155 155 - 205 155 - 205 205 - 255 205 - 255 15 30 60 Kn 15 60 Kr 30 >255 >255 86°0'0"E 86°0'0"E 86°0'0"E 86°0'0"E 86°0'0"E 86~0.0. **Monsoon Rainfall** N Monsoon Rainfall Post-Monsoon Rainfall Post-Monsoon Rainfall N (2001 - 2010)(2011 - 2020)(2011 - 2020)(2001-2010) 23°0'0"N Rainfall (mm) Rainfall (mm Rainfall (mm) Rainfall (mm <99 <99 <1,072 <1,072 99 - 116 99 - 116 1,072 - 1,142 1,072 - 1,142 116 - 133 116 - 133 1,142 - 1,212 1,142 - 1,212 133 - 150 133 - 150 15 1,212 - 1,282 1,212 - 1,282 15 60 Km 60 Km 60 Km 15 30 15 30 >150 >150 >1,282 >1,282 86°0'0"E 86°0'0"E 86°0'0"E 86°0'0"E

Spatial and temporal distribution of Temperature

- Higher temperatures have expanded towards the southeastern part of the basin, aligning with rainfall patterns.
- Increased temperatures can boost evaporation and the atmosphere's water-holding capacity, potentially leading to more rainfall

86°0'0"E

Station wise variation of Groundwater level relative to rainfall and temperature

Elevated levels of rainfall correspond to an increase in groundwater levels

Spatial and temporal distribution of groundwater level

In the pre-monsoon season, there is a noticeable decline in the mean water level, with a significant portion of the basin recording groundwater level below 6 meter below ground level (mbgl) in both decades

86°0'0"E

86°0'0"E

										2000
	Pre-monsoon		Monsoon		Post-monsoon		on			
Station	Kendall Tau	P value	Slope	Kendall Tau	P value	Slope	Kendall Tau	P value	Slope	
Chaibasa	0.526	0.001	0.625	0.432	0.009	0.513	0.468	0.004	0.416	Slope=9.83 mm/year
Chandil	0.132	0.436	0.071	0.247	0.135	0.079	0.332	0.044	2.013	
Hata/Tirin	-0.337	0.039	-0.117	-0.042	0.818	0.000	-0.358	0.027	-0.056	
Hesadih	-0.426	0.009	-0.146	0.042	0.820	0.018	-0.363	0.027	-0.134	Year
Kharsawan	-0.395	0.016	-0.101	-0.116	0.496	-0.020	-0.268	0.105	-0.098	26.0 -
Mathbura	0.442	0.007	0.177	0.400	0.015	0.254	0.337	0.041	0.151	
Pandrasalai	0.026	0.896	0.000	0.411	0.011	0.121	0.274	0.095	0.060	Slope=0.14 °C/year
Rajnagar	0.063	0.720	0.054	0.295	0.073	0.165	0.353	0.031	0.275	24.0 - 24.0 -
Saraikela	-0.447	0.006	-0.095	-0.168	0.314	-0.033	-0.316	0.055	-0.089	23.5 -

Year

Mann-Kendall trend results for Rainfall, Temperature, and Groundwater Level

Discussion & Conclusion

- There is an increasing trend of precipitation in the basin area which was also reported by Yaduvanshi et al., (2019)
- Mandal et al., (2021) projected an increase in precipitation and surface runoff by 8 to 48% and 28 to 110% respectively in the SRB.
- Their projections also anticipate an escalation in maximum and minimum temperatures within the basin, with a change ranging from -2.6°C to 4.7°C and -0.5°C to 5.6°C, respectively, for future timeframes spanning 2030, 2050, 2070, and 2080
- The spatio-temporal distribution of ground water level shows increasing trend for a number of station as well as decreasing trend for others, which may be due to the changes in LULC pattern.
- The groundwater level shows a positive relationship with precipitation.
- Changes in LULC coupled with other climatic parameters may cause direct impacts on quantity as well as a quality of groundwater resources. Hence it needs to be carefully monitored.

References

- Chatterjee, S., Krishna, A. P., & Sharma, A. P. (2016). Spatio-temporal runoff estimation using TRMM satellite data and NRSC-CN method of a watershed of Upper Subarnarekha River basin, India. Arabian Journal of Geosciences, 9(5). <u>https://doi.org/10.1007/s12517-016-2376-z</u>
- Halder, S., Roy, M. B., & Roy, P. K. (2020). Analysis of groundwater level trend and groundwater drought using Standard Groundwater Level Index: a case study of an eastern river basin of West Bengal, India. *SN Applied Sciences*, *2*, 1-24.
- Patra, S., Sahoo, S., Mishra, P., & Mahapatra, S. C. (2018). Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. J Urban Manag 7 (2): 70–84.
- Mandal, U., Sena, D. R., Dhar, A., Panda, S. N., Adhikary, P. P., & Mishra, P. K. (2021). Assessment of climate change and its impact on hydrological regimes and biomass yield of a tropical river basin. *Ecological Indicators*, *126*, 107646. https://doi.org/10.1016/j.ecolind.2021.107646
- Yaduvanshi, A., Sinha, A. K., & Haldar, K. (2019). A century scale hydro-climatic variability and associated risk in Subarnarekha river basin of India. *Modeling Earth Systems and Environment*, 5(3), 937–949. <u>https://doi.org/10.1007/s40808-019-00580-4</u>

THANK YOU!