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Abstract: The Fez region in Morocco has experienced changes in agricultural land use as a result
of climate change which include erratic rainfall, rising temperatures, and evapotranspiration. The
objective of this research is to investigate the impact of these changes on agricultural land use
between 2018 and 2022 using remote sensing data (sentinel-2 and MODIS), climate data, drought
index (Vegetation Condition Index (VCI)) and two machine learning algorithms (Random Forest
(RF) and Gradient Tree Boost (GTB). The RF and GTB algorithms were trained and tested, and their
performance was analyzed, revealing that the GTB algorithm is more efficient than the RF, with a
Kaffa coefficient of 91% and overall accuracy of 93%. The analysis of climate change on land use
and land cover (LULC) variations revealed a significant 54% reduction in rainfall. Furthermore,
agricultural land use and water were reduced by 41% and 17%, respectively. Conversely, barren land
and built-up areas increased by 58% and 4%, respectively, and the annual mean VCI decreased from
39.72 in 2018 to 19.9 in 2022. The study concluded that climate change had a significant impact on the
region’s agricultural land cover, and decreases in rainfall directly affect agricultural land use.

Keywords: : Climate Change; Google Earth Engine; LULC;Sentinel-2; Supervised learning; Morocco.

1. Introduction

Agriculture plays a crucial role in the Moroccan economy, contributing between 14-
20% to the nation’s Gross Domestic Product (GDP)[1]. It serves as a major source of
employment, accounting for 43% of job opportunities, particularly in rural areas, while
maintaining food security[1,2]. In addition, agriculture acts as a source of raw materials
for both domestic and international industries. In recent times, the agricultural sectors in
the Middle East and North Africa (MENA) region have encountered a range of challenges,
notably the impact of climate change on rainfall patterns and the depletion of groundwater
resources[3,4]. Furthermore, salinization in soils and groundwater causes a detrimental
impact on agricultural product growth and quality[5]. Incorporating decision-making
tools in Moroccan agriculture can significantly aid in evaluating and tackling climate-
related shifts. Employing remote sensing technology offers a quantitative approach to
comprehending environmental changes, resulting in reduced expenses and time spent
analyzing land use and cover. This can be a useful tool in assessing and addressing
the impact of climate change on agriculture in Morocco[6,7]. The popularity of machine
learning (ML) methods for remote sensing has significantly increased, especially in the
classification of land use and land cover (LULC). ML techniques have shown remarkable
effectiveness in reducing processing time and improving accuracy, enabling the efficient
detection of changes in LULC.
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When collecting remote sensing data for LULC classification, two main satellite plat-
forms are utilized: Sentinel-2 and Landsat. Although both have their advantages, Landsat
provides a more extensive dataset that goes back to 1972. However, Sentinel-2’s spatial
resolution is significantly higher, at 10 meters, compared to Landsat’s 60 meters. Therefore,
it is preferred to use Sentinel-2 for analyzing LULC changes from 2016 to the present. Addi-
tionally, Sentinel-2 offers 13 spectral bands, while Landsat 9 has only 9 bands that cover the
visible, near-infrared (NIR) and shortwave infrared (SWIR) wavelengths. To extract rele-
vant information on surface features such as vegetation, urban areas, soil, or water, spectral
indices (SI) are utilized, significantly enhancing the accuracy of LULC classification. The
accuracy of LULC classification is contingent on the selection of appropriate spectral bands
and indices, adequate training samples, and the application of a suitable machine-learning
algorithm. Numerous scholars have thoroughly investigated the utilization of spectral
bands and indices to evaluate changes in LULC, thereby facilitating comprehension of the
impact of climate change on changes in urban, agricultural, and water bodies. A study
conducted by Beroho et al. (2021) examined the changes in Land Use and Land Cover
(LULC) in a Mediterranean watershed in Morocco from 1998 to 2018. The study used a
Markov Chain and Cellular Automaton (CA-Markov) model[8]. The outcomes indicate
that urbanization has significantly reduced agricultural land in the Drâa Valley. Similarly,
Karmaoui et al. (2021) investigated LULC changes in Errachidia province, Morocco, from
2005 to 2020 using NDVI, NDWI, and EVI[9]. The findings suggest that urban development
has had an adverse impact on groundwater, soil quality, and natural ecosystems. The study
also highlights the importance of remote sensing in detecting hydrological droughts and
aiding in the conservation of land and water resources.

The objective of this research was to analyze the effects of temperature, drought, and
rainfall patterns on agricultural land located in the Fez prefecture of Morocco during the
rainy seasons of 2018 and 2022. To classify the land-use/land-cover (LULC) map into four
categories namely Builtup, Agriculture, Water, and Bareland, machine learning models
were employed based on Sentinel-2 satellite data. The LULC changes were compared with
climate and drought changes using MODIS, CHIRPS, and AgERA5 databases. The results
indicate that machine learning methods can efficiently be employed to monitor changes in
agricultural land.

2. Materials and Methods
2.1. Study Overview

Figure 1 depicts the study flowchart, which delineates the sequential procedures
involved in LULC classification and change analysis. Remote sensing data were initially
collected from the Sentinel-2 satellite. Following that, Spatial and temporal filtering tech-
niques were used to get cloud-free imagery while also limiting the selection of dates within
the scope of the investigation. After that, the spectral indices listed in Table 1 were com-
puted using ground truth data. Next, Random Forest and Gradient Tree Boosting were
trained with the training set. The validation set was used to evaluate the models’ perfor-
mance using a variety of performance metrics. The LULC results and climate data from the
CHIRPS dataset were used to analyse the changes.
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Figure 1. Research Flow Chart

2.2. Site Description

Fez is one of the oldest cities, with origins dating back to the 14th century. It is situated
in the northern part of Morocco. Fez is renowned for its prominence in the fields of tourism
and agriculture. The climate of the region is classified as semi-arid, featuring an annual
precipitation of approximately 500mm and an average temperature of 18 degrees Celsius.
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Figure 2. Study Area Map

2.3. Data Collection
2.3.1. Sentinel-2 and MODIS data

Remote sensing imagery data from the Sentinel-2 and MODIS satellites were collected
for the years 2018 and 2022. The data was processed via the Google Earth Engine platform
to filter out clouds and limit it to the study area.

2.3.2. Climate Data

The study area’s annual historical aggregated time series data for rainfall, maximum
and minimum temperature, and evapotranspiration for the years 2018 and 2022 were
obtained from the CHIRPS [10] and AgERA5[11] datasets available at (https://aquastat.fao.
org/climate-information-tool/climate-data?lat=33.8843&lon=-5.7375&year=2022, accessed
on 2 September 2023).

2.3.3. Ground Truth Data

We collected primary data from the field by conducting on-site visits. During these
visits, we carefully recorded the geographical coordinates and assigned appropriate labels
corresponding to the LULC classes (water, land, agriculture, and bare land) for each specific
location. Using the Google Earth Engine platform, ground data were subsequently utilized
to accurately pinpoint places within the study area and generated 1126 samples (908
training and 218 validation sets).

https://aquastat.fao.org/climate-information-tool/climate-data?lat=33.8843&lon=-5.7375&year=2022
https://aquastat.fao.org/climate-information-tool/climate-data?lat=33.8843&lon=-5.7375&year=2022
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2.3.4. Spectral Indices (SI)

Spectral indices refer to linear combinations of multiple spectral bands from remote
sensing satellites, which are utilized to extract additional information and enhance the
identification and differentiation of specific features on the Earth’s surface. In this study,
we employed four spectral indices presented in Table 1 to augment the feature set.

Table 1. List of Spectral Indices used for LULC classification.

Indices Name Formula Reference

NDVI Normalized Difference Vegetation Index (B8-B4)/(B8+B4) [12]
NDWI Normalized Difference Water Index (B3-B8)/(B3+B8) [13]
NDBI Normalized Difference Built-up Index (B11-B8)/(B11+B8) [14]

BSI Bare Soil Index (B11-B12-B8)/(B11+B12+B08) [15]

2.3.5. Drought Index (VCI)

The Vegetation Condition Index (VCI) is a metric derived from NDVI using equation 1
to evaluate vegetation health. It is used to classify drought severity into three classes: No
Drought (VCI > 50), Drought (35 <= VCI <= 50), and Severe Drought (VCI < 35) [16].

VCI =
NDVI − NDVImin

NDVImax − NDVImin
× 100 (1)

2.4. Classifiers
2.4.1. Random Forest(RF)

The RF algorithm is a supervised machine-learning technique that is utilized for both
classification and regression tasks[17]. It falls under the category of controlled nonpara-
metric methods. RF algorithm utilizes an ensemble of decision trees and combines their
predictions through a majority voting technique. RF has been utilized in numerous studies
to address various LULC classification problems [18], consistently demonstrating superior
performance and yielding optimal outcomes. The fundamental components of random
forests encompass the number of trees, variables per split, bag fraction (BF), maximum
nodes, and minimum tree leaves.

2.4.2. Gradient Tree Boost (GTB)

The GTB model is a supervised algorithm that is commonly used to solve classification
and regression problems [19]. GTB aggregates and produces a more precise final result by
using an ensemble of weak individual decision trees. GTB can avoid overfitting by fitting
the residuals of the regression tree at each iteration with negative gradient loss values.
Several authors have reported on the use of GTB for LULC classification, revealing that the
algorithm also produces good results [20,21].

2.5. Performance Evaluation Metrics

The evaluation of the machine learning algorithm’s accuracy for the classification of
LULC was conducted using a confusion matrix. This assessment included metrics such as
overall accuracy (OA), producer’s accuracy (PA), consumer’s accuracy (CA), and kappa
coefficient.

3. Results and Discussion
3.1. Classification Accuracy

The classification performance of the RF and GTB algorithms for LULC is presented
in Table 2. Both algorithms demonstrated exceptional performance in generating accurate
LULC maps for the study, with an Overall Accuracy and kappa coefficient exceeding 80%.
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Table 2. Validation accuracies of GTB and RF algorithm

Algorithm Class Overall
Accurary

Consumer’s
Accurary

Producer’s
Accurary

Kaffa
Coeffiecient

RF

Built-Up Area

0.92

0.95 0.89

0.89Water 0.9 0.82

Agriculture 0.93 0.98

Bareland 0.89 0.94

GTB

Built-Up Area

0.93

0.96 0.89

0.91Water 0.96 0.93

Agriculture 0.91 0.99

Bareland 0.86 091

The assessment of the classification models’ performance was based on the metrics
outlined in section 2.5. The GTB model outperformed RF in terms of overall accuracy,
achieving a score of 93% and a kappa coefficient of 91%. In contrast, RF achieved an
accuracy rate of 92% and a kappa coefficient of 89%, which is comparatively lower.

3.2. Analysis of LULC, Climate and VCI changes

The best technique to examine land-cover changes and comprehend how changes
occur within classes is to compare classification results in detail. Figure 4 A and Tables 3
provide the LULC map comparison results for 2018 and 2022. Figure 4B displays the VCI
for the month of March in both 2018 and 2022. The graph clearly illustrates the noticeable
effect of drought in 2022. Figure 3 illustrates the VCI time-series plot for the years 2018 and
2022, with a noticeable decrease in the trend observed in 2022.

Table 3. The percentage of LULC-changes for each thematic class in 2018 and 2022.

Class 2018 (km2 ) 2022 (km2 ) Changes (km2)

Built-Up Area 74.2 77.5 +3.3
Water 0.57 0.47 -0.1

Agriculture 141.5 82.8 5-8.7
Bareland 95.1 150.7 +55.6

As indicated in Section 2.3.2, meteorological data for the specified period was acquired
and is presented in Table 4. It is observed that there was a significant increase in rainfall
of 392mm/year (46%) between the years 2018 and 2022. Furthermore, there was a sub-
sequent increase in evapotranspiration of 173mm (11.5%). The minimum and maximum
temperatures have both experienced an increase of 0.5 and 1.4 degrees Celsius, respectively.

Table 4. Climate and VCI changes between 2018 and 2022.

Year Min. Temp
(◦C)

Max. Temp
(◦C)

Rainfall
(mm/yr)

Evapotranpiration
(mm/yr)

Annual
Mean VCI

2018 5.1 36.9 729 1343 39.72
2022 5.6 37.5 337 1516 19.9
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Figure 3. LULC and VCI change maps (2018 and 2022)
Based on the findings, it is evident that a reduction in rainfall has a direct impact

on the decline in agricultural land coverage and VCI. Additionally, the drop in rainfall
contributes to an increase in the rate of evapotranspiration and VCI. Consequently, there
exists an inverse correlation between rainfall and evapotranspiration. Secondly, there exists
a classification overlap between the built-up region and bareland class as a result of the
resemblance in their features. The bareland class encompasses terrains such as mountains
and rocks, which are utilized to produce construction materials like marble and tiles.
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Figure 4. . VCI time series chart (2018 and 2022)

4. Conclusion

In this research, two classifiers, namely RF and GTB, were utilized for the purpose
of LULC classification. The findings of the study indicated that the GTB model had
superior performance compared to the RF model in terms of both overall accuracy and
the Kaffa coefficient. Based on the findings, it can be inferred that climate change has
a direct influence on agricultural land cover. Therefore, it is of utmost importance to
monitor changes in agricultural land cover to identify factors contributing to degradation,
particularly about climate and food security. The scope of this research is limited to the
analysis of LULC changes specifically during the rainfed season. Further investigation of
the irrigation season is essential to extrapolate the results and assess the broader changes
in agricultural land and the state of food security within the region.
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