

Parabens from personal care products compromise drinking water disinfection

A.R. Pereira^{1,2*}, I. Gomes^{1,2}, M. Simões^{1,2}

¹ LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal ² ALICE – Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal *up201505436@edu.fe.up.pt

Background

Drinking water distribution systems are known to harbor biofilms, even after disinfection, which constitute a source of microorganisms that may remain in the drinking water (DW) delivered through the consumer's tap^[1]. The presence of parabens (an anthropogenic contaminant) in DW is another problem that may affect microbial characteristics and the susceptibility to chlorine, compromising DW disinfection and quality^[2].

Goal: Evaluate the effects of methylparaben (MP) at environmental concentrations on dual-species biofilms (Acinetobacter calcoaceticus + Stenotrophomonas maltophilia) from DW.

Biofilms characteristics; Susceptibility to disinfection; Virulence factors production

Å Methodology Dual-species biofilm formation and MP exposure^[3] MP (0.15 and 15 μ g/L) exposure – 7 days A. calcoaceticus S. maltophilia 1×10^8 CFU/mL R2A; 24h; 25 °C; 160 rpm Coupons $(1 \text{ cm} \times 1 \text{ cm})$ high-density polyethylene (HDPE) polypropylene (PPL) **Biofilm susceptibility to chlorine disinfection** ✓ Biofilms exposed and non-exposed to MP were treated with sodium hypochlorite using free 30 min chlorine at 5 mg/L prepared through the N, N-diethyl p-phenylenediamine (DPD) method.

Biofilm characterization

✓ **Culturability** – Drop plate method

- **Cellular density and viability**
- Live/Dead BacLight kit
- 250 μL of SYTO 9TM + 50 μL of PI
- LEICA epifluorescence microscope

Neutralization: sodium

thiosulphate (0.5% w/v)

- Thickness (µm)
- **Quantification of Extracellular Polymeric Substances (EPS)**
- **Extraction** 4 h at 400 rpm and 4 °C
- Quantification of Proteins Total Protein Kit, Micro Lowry,
- Peterson's Modification
- Quantification of Polysaccharides Phenol-sulphuric acid

method

3 Virulence Factors Production

Swimming (0.3% agar) Swarming (0.7% agar) Twitching (1.5% agar)	 ✓ Siderophores production (20 µL – orange halo) ✓ Gelatinase activity (10 µL – transparent halo) 	48 h; 25 °C
	 ✓ Protease Production (10 µL – transparent halo) ✓ Lipase activity (15 µL – light-yellow halo) 	72 h; 25 °C

(4)

Biofilm characterization

(A) Culturability of biofilm cells (Log CFU/cm²) and (B) cellular density (Log cells/cm²) of dual-species biofilms after growing for 7 days. ^{a, b} - samples were statistically different from unexposed bacterial biofilms (t-test, P < 0.05).

of bacterial cells with damaged membrane.

Biofilm susceptibility to chlorine disinfection

(C) Logarithmic reduction of culturable cells of biofilms. ^{a, b, c, d} - corresponds to conditions that have statistically significant differences from each other (t-test, P < 0.05).

✓ MP-exposed dual-species biofilms seem to be more tolerant to chlorine disinfection

Biofilm thickness (µm)

% increase (\uparrow) in biofilm thickness for MP-exposed biofilms in relation to non-exposed

PPL

EPS content

% increase (\uparrow) and decrease (\downarrow) in EPS content for MP-exposed biofilms in relation to non-exposed

		HDPE	PPL
Polysaccharides	Control	8.0±1.0	9.0±3.5
(µg/cm²)	MP (15 μg/L)	-	↓ 43%
Proteins	Control	11±6.7	11±5.2
(µg/cm²)	MP (15 μg/L)	个 120%	-

Control	24.5±2.0	22.6±2.8
MP (15 μg/L)	-	个 45%

- Conclusions

- MP exposure induces the proliferation of biofilm cells and affects biofilm structure and composition
- ✓ MP presence may compromise chlorination efficacy
- MP exposure may increase *S. maltophilia* virulence (protease and lipase activity, and swimming motility)

Acknowledgments

This work was financially supported by: LA/P/0045/2020 (ALiCE) and UIDB/00511/2020 - UIDP/00511/2020 (LEPABE) funded by national funds through FCT/MCTES (PIDDAC); PhD scholarship (2021.06226.BD) provided by FCT; PRESAGE- Aquatic/0007/2020, UIDB/50006/2020 | UIDP/50006/2020, funded by national funds through FCT/MCTES (PIDDAC); and FCT contract 2022.06488.CEECIND.

Virulence factors production

Increase of virulence factors activity of MP-exposed S. maltophilia

S. maltophilia	MP (150 ng/L)	
	(Legend:
Siderophores	/	+ (< 50%)
Protease	++	++ (50 – 100%)
Gelatinase	+	+++ (> 100%)
Lipase	/	<pre>/ (not statistically different from control – non-exposed S. maltophilia)</pre>
Swimming	+++	
Swarmming	/	
Twitching	/	

References

1. Gomes, I.B.; Maillard, J.-Y.; Simões, L.C.; Simões, M. NPJ Clean Water 2020, 3, 39. 2. Pereira, A. R.; Simões, M.; and Gomes, I. B. Sci Total Environ 2023, 905, 7332. 3. Pereira, A. R.; Gomes, I. B.; and Simões, M. J Environ Manage 2023, 332, 117413.