

Synthesis and biological evaluation of new piperazine-based amino-alcohol-quinolines as promising antimycobacterial drugs

antibiotics

<u>Élise Charrier^{a,b}, François Peltier^{a,b}, Alexandra Dassonville-Klimpt^a, Claire Andréjak^{a,c}, Pascal Sonnet^a.</u> ^aAGents Infectieux, Résistance et chimiothérapie, UR 4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens, France ^bDépartement de Bactériologie, CHU Amiens-Picardie, 80054, Amiens, France ^cUnité de soins intensifs respiratoires, CHU Amiens Picardie, 80054, Amiens, France

Context

Mycobacterium tuberculosis (M. tb) is responsible for 10.6 million infections and 1.6 million deaths worldwide in 2020.^[1] However, in Europe and North America, the incidence of non-tuberculous mycobacteria (NTM) infections exceeds that of *M. tb*.^[2] Among NTM with pulmonary pathogenicity, M. abscessus (M. abs) and M. avium *complex* (MAC) are the most common.^[2] As for tuberculosis cure, NTM treatments require a combination of antibiotics which can induce many side effects for a long period (Figure 1).[2,3]

There is an urgent need to develop **new antimycobacterial drugs** that are safer, more specific to NTM and, if possible, with a new mechanism of action to limit crossresistance.

Antimycobacterial quinolines

Quinoline-based pharmacophore is found in bedaquiline (BQ) and mefloquine (MQ) (Figure 2). They are active against NTM and target ATP synthase but not only in the case of MQ.^[4,5,6] However, BQ and MQ can induce liver and central nervous system disorders respectively.^[7,8] Thus, we are interested in developing new amino-alcoholquinolines (AAQ) as MQ analogs to establish new structure-activity relationships (SAR) and to reduce MQ toxicity.

In vitro evaluations of previous series have identified the hit A. It is effective on MAC (MIC = 4 μ g/mL) and has a better selectivity index (SI) than MQ (SI = 2.9 vs 0.4).^[5] To increase their SI, new AAQ with piperazine core grafted with aryl or alkyl groups have been designed.

Synthesis

To synthesise new aryl and alkyl series, two intermediates were required: i) the epoxydes 5a/b obtained from 4-hydroxyquinoline 1 in four steps and, ii) the amines 6a-d and 10a-d (Scheme 1). Aryl-piperazines 6a-d were commercially available, while alkyl-piperazines 10a-d were obtained in two-step synthesis from tert-butyl piperazine-1-carboxylate 8. Both entities were conjugated by nucleophilic substitution to afford three enantiomer pairs 7a-f and four enantiomer pairs 11a-h in 6 to 31 % of global yields and an enantiomeric excess (ee) greater than 86 % (Table 1).

ee (%)
94
92
87
86
85
86
89
91
86
87
86
88

Scheme 1: Asymmetric synthesis of aryl and alkyl series . ee ≥ 86%			± /	00
	11g(R)	-	15	85
i: POBr ₃ , 150 °C, ii: potassium vinyltrifluoroborate, Cs ₂ CO ₃ , PdCl ₂ (dppf).DCM, THF/H ₂ O 9/1, 70 °C, iii: AD-mix α or β , K ₂ [(OsO ₂ (OH) ₄], tBuOH/H ₂ O 1/1, iv: 1) MeC(OMe) ₃ , PTSA.H ₃ O,DCM, 2) TMSBr, DCM, 3) K ₃ CO ₃ , MeOH, v: DIPEA, MeCN, vi: 1) TFA, DCM, 2) NaOH, DCM, vii: 130 °C, 150 W, EtOH.	11h (S)	- 6	13	85

Physicochemical and pharmacokinetic properties

In silico physicochemical (PC) and pharmacokinetic (PK) profiles of aryl and alkyl compounds 7a-f and 11a-h were performed using Qikprop software (Figure 3). Lipinski's and Veber's rules were chosen for the PC data. Solubility, metabolic reactions, cardiac toxicity and permeability of Caco-2 cells parameters were selected to reflect A.D.M.E.T properties.

Figure 3: Radar chart of *in silico* physicochemical and pharmacokinetic properties of **aryl** and **alkyl series**.

Biological results

The efficacy of final compounds 7a-f and 11a-h was tested on M. abs smooth (S) and rough (R) phenotypes. While aryl compounds were inactive, alkyl series displayed moderate activity (Table 2). AAQ **11g/h** with a long alkyl chain (n = 6) were more efficient than **11a-d** (n = 3 or 4). No difference in activity was observed between S and R enantiomers of the same pair. Cytotoxicity assays on HepG2 cell lines revealed that new series 7 and 11 are less toxic than MQ (IC_{50} = 26.2-96.3 vs 1.5 µg/mL). SI of alkyl AAQ are equal or better than those of MQ (SI = 0.4-5.0 vs 0.1-0.4).

Table 2: In vitro antimycobacterial activity and cytotoxicity of aryl and alkyl series 7 and 11.

HepG2		
I	M. abs S	M. abs R
92.3 ± 4.3	ND	ND
51.1 ± 0.1	ND	ND
48.6 ± 2.5	ND	ND
39.9 ± 3.5	< 0.2	< 0.2
50.6 ± 0.7	ND	ND
95.7 ± 1.0	< 0.1	< 0.1
58.6 ± 4.6	0.8	0.8
60.1 ± 6.3	0.4	0.4-0.8
70.6 ± 6.5	1.0	1.0-2.0
NA ^e	0.6	0.6
96.3 ± 1.0	2.3	1.2-2.3
26.2 ± 0.7	0.8	0.8
41.0 ± 3.7	5.0	1.3-5.0
33.5 ± 5.8	4.1	2.1-4.1
1.5 ± 0.1	0.1	0.1
ND ^d	ND ^d	ND^{d}
ND ^d	ND ^d	ND ^d
ND ^d	ND ^d	ND ^d
	92.3 ± 4.3 51.1 ± 0.1 48.6 ± 2.5 39.9 ± 3.5 50.6 ± 0.7 95.7 ± 1.0 58.6 ± 4.6 60.1 ± 6.3 70.6 ± 6.5 NA ^e 96.3 ± 1.0 26.2 ± 0.7 41.0 ± 3.7 33.5 ± 5.8 1.5 ± 0.1 ND ^d ND ^d ND ^d	92.3 ± 4.3 ND 51.1 ± 0.1 ND 48.6 ± 2.5 ND 39.9 ± 3.5 < 0.2

 \rightarrow Aryl and alkyl series comply with Lipinski's and Veber's rules \rightarrow Aryl and alkyl series could be potential drug candidats

Conclusion and perspectives

Fourteen new AAQ in 6 to 32 % of global yields and 86 to 94 % of ee were obtained by a short asymmetric synthesis (5 or 7 steps).

While aryl series 7 was inactive in vitro against M. abs S and R, alkyl AAQ 11 displayed anti-NTM activity from 4 to 64 µg/mL.

SI values for alkyl AAQ 11 highlighted eight compounds AAQ 11 safer than MQ (calculated according their cytotoxicity on HepG2). The enantiomer pair **11g/11h** is the **hit** of new series.

In the future, in vitro antimycobacterial activity on slowly growing rate NTM such as MAC or *M. xenopi,* and cytotoxicity on THP-1 cell lines for alkyl AAQ will be evaluated. In order to explore new SAR, further modulations focusing on the MQ core are planned. A few compounds with the highest SI will be selected for *in vivo* evaluation on mouse model.

^b IC₅₀ results are expressed as mean ± SD of duplicate experiments, ^cSI = IC₅₀/MIC on *M. abs S* or *R* strains,

^dND not determined, ^eNA not applicable.

References

[1] Rapport sur la tuberculose dans le monde, OMS (2022). [2] Griffith, D.E. et al. American Journal Respiratory and Critical Care Medicine 175, 367-416 (2007). [3] Diel, R. et al. Chest 153, 888–921 (2018). [4] Brown-Eliott, B.A. et al. Antimicrobial Agents and Chemotherapy 61 (2017). [5] Laumaillé, P. et al. Pharmaceuticals 12, 91 (2019). [6] Martin-Galiano, A.J. et al. Antimicrob. Agents and Chemother. 46, 1680-1687 (2002). [7] Patel, H. et al. Tuberculosis, 117, 79-84, (2019). [8] Weinke, T. et al. American Journal of Tropical Medicine and Hygiene 45, 86-91 (1991).

The 3rd International Electronic Conference on Antibiotics (ECA), 1-15 December 2023.