Antibacterial and Antibiofilm Effects of Different Types of Honey Against Bacteria Isolated from Chronic Wound CITAB AQUA VALOR Infections

U. PORTO

Andréa Bezerra^{1, 2}*, Maria José Alves^{3,4}, Maria José Saavedra², Paulo Russo Almeida², Hélder Fonseca¹, Francisca Rodrigues⁵, Cristina Delerue-Matos⁵, Irene Gouvinhas², Juliana Garcia^{2,3}

¹CIAFEL, Faculdade de Desporto da Universidade do Porto, Rua Dr. Plácido Costa, 91, 4200-450, Porto, Portugal.

²CITAB – Centre for the Research and Technology of Agro-Environment and Biological Sciences/ Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal.

³AquaValor – Centro de Valorização e Transferência de Tecnologia da Água – Associação, Rua Dr. Júlio Martins n.º 1, 5400-342 Chaves, Portugal

⁴CIMO - Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal.

⁵ REQUIMTE/LAQV, ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015, Porto, Portugal.

*Email: andreab@utad.pt; +351 926554847

Introduction

DE TRÁS-OS-MONTES

Hydrogen peroxide

Diabetic foot ulcer

Antibacterial effect

Methods

Seven types of Honey were collected from the region of Trás-os-Montes, Portugal

Pollen content analysis

Multi-drug resistant bacterial strains were collected from chronic wounds

Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, *Candida albicans*

MIC determination

1x MIC 5x MIC **10x MIC**

Biofilm formation

% Biofilm removal: Crystal violet % Metabolic inactivation: Resazurin

Statistical analysis

PRISMA GRAPHPAD two-way ANOVA Tukey's test Principal Component Analysis and Regression

Results

Figure 1: Percentage of biofilm removal treated with different types of honey at different concentrations. A: • companison with H-4. B: comparison with H-10 and # comparison with control. * C: comparison with H-2, [#] comparison with H-3, [&] comparison with H-4, ^{\$} comparison with H-5; [§] comparison with H-9. ⁺ in comparison with H-10. **D:** * comparison with H-10. **D:** * comparison with H-10. **D:** * comparison with H-10. comparison with control group. *, #, &, \$, 9, + for (p<0.05) and **, ##, &&, \$, 9, 0, + for (p<0.01). Abbreviations: MIC: minimum inhibitory concentration

Figure 2: Percentage of metabolic inactivation treated with different types of honey at different concentrations. A: *comparison between concentrations. B: no differences were found. C: *comparison with positive control. D: *comparison with positive control and # for comparison between concentrations. E: * comparison with control group. *, #for (p<0.05) and **, ## for (p<0.01) and ***, ### for (p<0.001). Abbreviations: MIC: minimum inhibitory concentration

Acknowledgments

Andréa Bezerra thanks to FCT (Fundação para a Ciência e Tecnologia) for funding through Honey+ project (MTS/SAS/0077/2020). Francisca Rodrigues thanks to FCT (Fundação para a Ciência e Tecnologia) for funding through the Scientific Employment Stimulus - Individual Call (CEECIND/01886/2020). Irene Gouvinhas thanks to FCT (Fundação para a Ciência e Tecnologia) for funding through the Scientific Employment Stimulus - Individual Call (2022.00498.CEECIND). Juliana Garcia is grateful to the FCT for the projects titled "AquaValor—Centro de Valorização e Transferência de Tecnologia da Água" (NORTE-01-0246-FEDER-000053) and "Emprego altamente qualificado nas empresas ou em COLABS—Contratação de Recursos Humanos Altamente Qualificados (PME ou CoLAB)" (NORTE-06-3559-FSE-000095), supported by the Norte Portugal Regional Operational Programme (NORTE 2020) under the PORTUGAL 2020 Partnership Agreement through the European Regional Development Fund (ERDF). Projects UIDB/AGR/04033/2020 (CITAB) and LA/00037/2022 (Inov4Agro) funded by the Portuguese Foundation for Science and Technology (FCT).

Conclusion: Honey was effective to remove multi-drug resistant bacterial biofilm and to inactivate their metabolism, especially at higher concentrations. Differences in bacterial responses may be due to variations in honey's pollen content and bacterial strain sensitivity.

References:

- 1. Al-Waili, N., et al., Synergistic Effects of Honey and Propolis toward Drug Multi-Resistant Staphylococcus Aureus, Escherichia Coli and Candida Albicans Isolates in Single and Polymicrobial Cultures. Int. J. Med. Sci., 2012. 9(9): p. 793-800.
- Hartemann-Heurtier, A., et al., Diabetic foot ulcer and multidrug-resistant organisms: risk factors and impact. Diabet Med, 2004. 21(7): p. 710-715. 2.
- Moghazy, A.M., et al., The clinical and cost effectiveness of bee honey dressing in the treatment of diabetic foot ulcers. Diabetes Res. Clin. Pract., 2010. 89(3): p. 276-281.
- Yupanqui Mieles, J., et al., Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics, 2022. 14(8): p. 1663. 4.