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ABSTRACT 

 

A TOPological Substructural MOlecular DEsign (TOPS-MODE) was used to predict the 

flux across human skin permeability coefficient for heterogeneous set of compounds. The 

obtained model explained more than 84 % of data variance and shown the importance of 

the hydrogen bonding and the hydrophobicity to describe the property under study. 

Finally, the TOPS-MODE was used to calculate the contribution of different fragments to 

the human skin coefficient for studied compounds. The present approximation proved to 

be a good method to studying the permeability skin human coefficient for the 

heterogeneous compounds, which could be extended to other series of compounds.  
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INTRODUCTION 
 

The barrier function of human skin is important both to the transdermal administration of 

drugs and to the uptake of toxic chemicals following dermal exposure. As a result, 

several models to predict molecular transport through human skin have been developed 

[1-3].   

Various synthetic membranes have been employed in drug release studies. The most 

commonly used artificial membranes are polydimethylsiloxane (PDMS) and cellulose 

acetate [4- 10].  

PDMS (for example, Silastic) is an isotropic polymer widely employed as an alternative 

model barrier for in vitro percutaneous penetration. It behaves according to Fick’s first 

law of diffusion and possesses lipid-like properties, making it a good model for the 

stratum corneum [11]. 

Cellulose acetate membranes have similarly found use in such experiments and also in 

the characterization of iontophoretic delivery [12-16]. However, these membranes have 

often been shown to overestimate significantly the flux across skin and their use is 

significantly limited. Further, Cronin et al. [17], in a mechanistic study of penetration 

across a PDMS membrane, indicated that penetration is related primarily to the ability of 

the penetrants to form hydrogen bonds and not to their lipophilicity, as suggested by 

similar studies on skin ex vivo. 

Early quantitative structure-activity relationship (QSAR) studies to predict skin 

permeation of chemicals revealed that hydrophobicity was correlated linearly with 

increasing permeability [18, 19]. Patel et al. [20] demonstrated in an excellent paper as 

the hydrophobicity, molecular size and the hydrogen bonding capability of a molecule 

affect its ability to permeate skin. 

In the context of in silico methods for modeling physicochemical and biological 

properties of chemicals the topological sub-structural molecular design (TOPS-MODE) 

approach has been introduced [21-25]. 

The successful applications of this theoretical approach to the modeling of physical and 

physical-chemical properties [26, 27] have inspired us to perform a more exhaustive 

study in order to test and/or validate the TOPS MODE applicability in this area.  



 3

Therefore, the aim of this study was to investigate the role that TOPS-MODE play on the 

explanation of such property using a data set of 114 organic compounds and we will 

show here how TOPS – MODE is able to produce good QSPR models that permit easy 

structural interpretation of the results in terms of group contributions to skin 

permeability. 

 

The Tops-Mode Approach 
 

TOPS-MODE is based on the computation of the spectral moments of the bond matrix, 

the mathematical basis of which has been described previously [21 - 24]. The TOPS-

MODE approach has been recently reviewed in the literature [28], and both the 

methodology and its software implementation have been described [29]. 

According to the authors, the application of the TOPS-MODE approach to the study of 

quantitative structure – permeability relationships (QSPR) can be summarized in the 

following steps: 

1. To draw the hydrogen-depleted molecular graphs for each molecule of the data 

set, 

2. To use appropriate bond weights in order to differentiate the molecular bonds, 

e.g., hydrophobicity, bond dipoles, bond polarizability, etc., 

3. To compute the spectral moments of the bond matrix with the appropriate 

weights for each molecule in the data set, generating a table in which rows 

correspond to the compounds and columns correspond to the spectral moments 

of the bond matrix. Spectral moments are defined as the trace of the different 

powers of the bond matrix [30],  

4. To find QSPR by using a suitable linear or non-linear multivariate statistical 

technique, such as multi-linear regression analysis (MRA), etc. to obtain an 

equation of the form: 

      P = a0µ0 + a1µ1 + a2µ2 + a3µ3  ………… akµk + b                                             (Eq. 1)     

                where P is the property measurement, µk is the kth spectral moment, and            

ak’s are the coefficients obtained by the MRA, 
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5. To test the predictive capability of the QSPR model by using cross-validation 

techniques. 

6.  To compute the contributions of different groups of interest in order to 

determine their quantitative contribution to the permeability activity of 

molecules under study. 

The computation of fragment contributions to the activity under study is probably the 

most important advance of the TOPS-MODE approach to the study of permeability 

variables compared to the traditional QSAR and QSPR methods. The procedure consists 

of calculating the spectral moment for all the fragments contained in a given substructure, 

and by difference of these moments we obtain the contribution of the substructure. The 

general algorithm for this computational approach is as follows: 

First, we select the substructure whose contribution to the moments we would like to 

determine. Then, we generate all the fragments, which are contained in the corresponding 

substructure, and calculate the spectral moments for both, the substructure and all their 

fragments. The contribution of the substructure to the spectral moments is finally 

obtained as the difference between the spectral moments of the substructure and all those 

from their fragments. Once, the contributions of the different structural fragments are 

obtained, we only need to substitute these contributions into the quantitative model 

developed to describe the property studied.     

 

Data Sets and Computational Strategies 
A data set of 114 compounds for which the permeability coefficients were reported in the 

literature was selected [31]. Briefly, these data are a compilation from both literature and 

regulatory sources [32-33]. As these data come from a variety of sources it may be 

assumed that there is variability in the exact methodology.  

The parameter studied is log(p) where p is the permeability coefficient through human 

skin. The names of the compounds, as well as the calculated and experimental values of 

log(p) in units of cm\h as despite equation 4 are shown in Table 1.  

 

Table 1. Observed, predicted, and residual values of permeability coefficients (cm/h) 

through human skin for the 110 compounds used to derive the QSPR (Eq. 3). 
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Number Compounds Observed Predicted Deleted Residuals 

1 1,2-dichloropropene -2.00 -1.55 -0.46 

2 17-hydroxyprogesterone -3.22 -3.72 0.61 

3 2,3-butanediol -4.39 -3.47 -0.94 

4 2,4,6-trichlorophenol -1.23 -1.75 0.55 

5 2,4-Dichlorophenol -1.22 -1.91 0.72 

6 2-butanone -2.95 -2.43 -0.52 

7 2-butoxyethanol -2.85 -3.01 0.17 

8 2-chlorophenol -1.48 -2.07 0.61 

9 2-cresol -2.00 -2.02 0.02 

10 2-heptanone -2.00 -2.06 0.06 

11 2-hexanone -2.35 -2.21 -0.14 

12 2-pentanone -2.6 -2.34 -0.27 

13 2-toluidine -1.44 -2.21 0.79 

14 3-cresol -2.00 -2.02 0.03 

15 3-xylene -1.10 -1.12 0.02 

16 4-bromophenol -1.44 -2.01 0.59 

17 4-chloro-3,5-xylenol -1.28 -1.61 0.35 

18 4-chlorophenol -1.44 -2.07 0.65 

19 4-ethyl phenol -1.46 -1.77 0.32 

20 4-methyl-2-pentanol -2.33 -2.00 -0.35 

21 Acetaldehyde -3.15 -2.66 -0.50 

22 Acetic acid -3.21 -2.85 -0.37 

23 Acetone -3.29 -2.62 -0.68 

24 Acetonitrile -3.21 -2.56 -0.67 

25 Acrolein -3.07 -2.60 -0.49 

26 Acrylic acid -3.05 -2.62 -0.44 

27 Acrylonitrile -2.87 -2.35 -0.54 

28 Aldosterone -5.52 -5.38 -0.20 

29 Allyl alcohol -2.95 -2.97 0.02 
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30 Amobarbital -2.64 -3.24 0.69 

31 Aniline -2.65 -2.40 -0.25 

32 Atropine -5.07 -3.56 -0.58 

33 Benzyl alcohol -2.22 -2.75 0.54 

34 Butobarbital -3.71 -4.08 0.41 

35 Butyl acrylate -2.00 -2.22 0.23 

36 Butyric acid -3.00 -2.64 -0.37 

37 Catechol -2.77 -2.89 0.12 

38 Cortexolone -4.13 -3.72 -0.49 

39 Corticosterone -4.22 -4.61 0.49 

40 Cortisone -5.00 -5.21 0.27 

41 Cresol -2.00 -2.02 0.02 

42 Cumene -0.85 -0.61 -0.26 

43 Cyclohexanone -2.74 -3.19 0.47 

44 Diethanolamine -4.38 -4.59 0.22 

45 Diethyl ether -1.80 -1.75 -0.05 

46 Diethylamine -2.75 -1.64 -1.14 

47 Digitoxina -4.89 - - 

48 Dimethyl acetamide -2.80 -3.39 0.60 

49 Dioxane -3.45 -3.31 -0.14 

50 Epichlorohydrin -3.43 -3.04 -0.40 

51 Estriol -4.40 -4.01 -0.56 

52 Estrone -2.44 -2.55 0.11 

53 Ethanol -3.10 -2.83 -0.27 

54 Ethanolamine -4.02 -4.19 0.19 

55 Ethyl acrylate -2.39 -2.45 0.06 

56 Ethyl benzene -1.15 -1.10 -0.05 

57 Ethyl formate -3.01 -2.98 -0.03 

58 Ethylamine -3.09 -2.85 -0.24 

59 Ethylene dichloride -2.00 -1.94 -0.06 

60 Ethylene glycol -4.07 -4.18 0.12 
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61 Ethylhexyl phthalate -1.52 -1.31 -0.32 

62 Etorphine -2.44 -2.47 0.05 

63 Fentanyla -2.25 - - 

64 Formaldehyde -2.65 -2.69 0.04 

65 Heptanola -1.50 - - 

66 Hexachlorobutadiene -0.92 -1.04 0.13 

67 Hexachloroethane -1.40 -1.63 0.24 

68 Hexanoic acid -1.85 -2.41 0.57 

69 Hydrocortisone -5.52 -4.70 -1.05 

70 Hydromorphone -4.82 -4.30 -0.56 

71 Isoamyl alcohol -2.00 -2.46 0.48 

72 Isobutanol -2.65 -2.50 -0.16 

73 Isopropyl alcohol -3.05 -2.46 -0.60 

74 Isopropylamine -2.90 -2.49 -0.42 

75 Isoquinoline -1.78 -1.87 0.10 

76 Meperidine -2.43 -1.71 -0.78 

77 Methanol -3.46 -3.41 -0.06 

78 Methyl acrylate -2.68 -3.13 0.46 

79 Methyl acrylic acid -2.58 -2.64 0.06 

80 Methyl cellosolve -3.73 -3.94 0.22 

81 Monomethylhydrazine -3.75 -4.11 0.43 

82 Morphine -5.03 -4.13 -0.96 

83 Morpholine -3.86 -3.39 -0.48 

84 n,n-dimethyl aniline -1.70 -2.03 0.33 

85 Naproxen -3.40 -1.94 -0.64 

86 n-butanol -1.55 -2.69 0.02 

87 n-decanol -1.10 -1.49 0.48 

88 n-heptanoic acid -1.70 -2.24 0.56 

89 n-hexanol -1.89 -2.41 0.55 

90 Nicotine -1.71 -2.79 0.32 

91 n-nitrosodiethanolamine -5.22 -5.50 0.33 
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92 n-octanoic acid -1.60 -2.04 0.47 

93 n-octanol -1.28 -2.01 0.79 

94 n-pentanol -2.22 -2.57 0.36 

95 n-propanol -2.91 -2.77 -0.14 

96 Pentanoic acid -2.70 -2.54 -0.17 

97 Phenobarbital -3.34 -3.64 0.34 

98 Phenol -2.00 -2.07 0.07 

99 Phenylglycinyl ether -2.84 -2.04 -0.82 

100 Progesterone -2.82 -3.24 0.52 

101 Propionic acid -2.94 -2.71 -0.24 

102 Propylene dichloride 2.00 -1.61 -0.41 

103 Propylene oxide -3.05 -2.79 -0.26 

104 Pyridine -2.74 -2.35 -0.40 

105 Resorcinol -2.82 -2.89 0.07 

106 Salicylic acid -2.20 -2.90 0.73 

107 Scopolamine -4.30 -4.75 0.50 

108 Styrene -0.19 -1.16 1.02 

109 Sucrosea -5.28 - - 

110 Testosterone -3.40 -3.57 0.20 

111 Thymol -1.28 -0.93 -0.37 

112 Toluene -1.30 -1.36 0.07 

113 Triethylamine -2.31 -0.64 -0.16 

114 Vinyl acetate -2.73 -2.82 0.09 
a Compounds indicates an outlier removed from Eq. (2)  

 

TOPS-MODE [29] computer software was employed to calculate the molecular 

descriptors. Here, the hidrophobicity was used to weigh the bond adjacency matrix. The 

selection of only this type of descriptor from the whole pool of ten types included in 

TOPS-MODE methodology was carried out for the sake of simplicity and on the belief 

that steric and hydrophobicity parameters influence the permeability of compounds 

through skin layers. We also used multiplications of spectral moments as independent 
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variables to describe permeability characteristics. In this case we only multiplied µ0 and 

µ1 for the fifteen first spectral moments obtaining thirty new variables. The total number 

of descriptors used in this model was 45 (15 spectral moments + 30 multiplications of 

moments).  On the other hand, another structural variable employed in this study was an 

indicator of hydrogen bond capability of groups in the molecule. The total numbers of 

lone pairs capable of accepting and donating hydrogen bonds was taken according to 

Charton and Charton [34]. In this scheme oxygen, having two lone pairs is assumed to be 

capable of accepting two hydrogen bonds [35]. 

The statistical processing to obtain the QSAR model was carried out by using the forward 

stepwise regression methods. The statistical significance of the model was determined by 

examining the regression coefficient, the standard deviation, the number of variables, the 

cross validation leave-one-out statistics and the proportion between the cases and 

variables in the equation. The identification of outliers following analysis of the residuals 

from the predicted fits was performed using least-squares regression analysis [36].   

 

Quantitative Structure Permeation Relations  
The best QSPR model obtained with the TOPS-MODE descriptors is given below 

together with the statistical parameters of the regression. 

 

            (Eq. 2) 

 

N = 114    S = 0.573    R2 = 0.760     F = 56.452     p < 0.0001     q2 = 0.723     Scv = 0.653    

where N is the number of compounds included in the model, R2 is the correlation 

coefficient, S the standard deviation of the regression, F the Fisher ratio, q2 the 

correlation coefficient of the cross – validation, p is the significance of the variables in 

the model and Scv is the standard deviation of the cross – validation. 

The variables included in the model are designated as follows: the sub-index represents 

the order of the spectral moment and the super-index the type of bond weight used, i.e., H 

for hydrophobicity and HALP is the total number of lone pairs that can accept hydrogen 

bonds on the molecule. 
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Analysis of the residuals for equation 2 identified four potential outliers. These outliers 

have removed from the complete data set. It is not appropriate to remove compounds 

from a data set simply to improve a correlation, and indeed much important information 

may be gleaned from the analysis of outliers omitted from QSPR.  

The most significant of these were digitoxin and sucrose is atypical of this data set as 

they are able to form many more hydrogen bonds than the other compounds. These 

outliers have been reported by Cronin et al. [11]. On the other hand, these very large 

number of hydrogen bond acceptors could potentially impede skin permeation.  

Based on this evidence it was felt that it would be necessary, and justified, to omit these 

outliers in this study in order to better model the data. Removal of these compounds and 

subsequent re-analysis of the data set produced the following QSPR: 

 

                 (Eq. 3) 

 

N = 110    S = 0.439    R2 = 0.844     F = 93.347     p < 0.0001     q2 = 0.817     Scv = 0.518    

An improved correlation coefficients is observed for equation 3 in which the outliers 

have been removed when compared with equation 2. Due to the statistical quality of this 

relationship the removal of more outliers is not justified. From the statistical point of 

view this model is a robust one as can be seen from the statistical parameters of the cross-

validation. The figure 1 shows a linear regression between the predicted and observed 

values for log (p). 

 

Figure 1. The linear relation between observed and predicted permeability for the 

compounds of the training set. 
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To complete our permeability study of this set of is absolutely necessary to know which 

are the possible contributions at the skin permeability of some chemical groups that 

appear in the training set. 

FRAGMENTS CONTRIBUTIONS 

 

One of the most important advantages that TOPS-MODE brings to the study of QSPR 

and QSAR is concerned with the structural interpretability of the models. This 

interpretability comes from the fact that the spectral moments can be expressed as linear 
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combinations of structural fragments. In such a way, we can determine the fragments 

with a positive or negative contribution to the property under study, which can be 

interpreted in terms of the physicochemical or biological processes influencing its. 

The figure 2 and in the table 2 showing that the increase of the aliphatic rings size of the 

fragment series F35 to F38 leads to increase too the contribution to the property. In 

agreement with the equation 2, higher hydrophobicity of the fragment increases its 

contribution to the permeability in human skin. This behavior has been established by 

Cronin et al. [11] and Pots and Guy [40]. This authors show how the percutaneous 

absorption across excised human skin in vitro is governed by hydrophobicity property.    

  

Table 2.Contribution of some selected fragments to the permeation across human skin 

property. 

 

 

Fragment Contribution Fragment Contribution Fragment Contribution 

F1 0.68 F17 -0.42 F33 1.27 

F2 0.86 F18 -0.24 F34 1.49 

F3 0.92 F19 -0.38 F35 1.43 

F4 0.52 F20 1.10 F36 0.21 

F5 0.88 F21 0.57 F37 0.45 

F6 1.01 F22 1.04 F38 0.58 

F7 1.01 F23 0.98 F39 0.88 

F8 0.86 F24 0.72 F40 0.46 

F9 1.04 F25 0.82 F41 1.04 

F10 1.10 F26 0.94 F42 1.47 

F11 -0.33 F27 1.28 F43 -0.06 

F12 -1.36 F28 0.74 F44 0.97 

F13 -0.52 F29 0.93 F45 1.16 

F14 -1.01 F30 0.99 F46 1.61 

F15 -1.56 F31 0.76 F47 0.31 

F16 0.68 F32 0.84 F48 -0.46 
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Figure 2. Structures of selected fragments for which their contribution to the human skin 

permeability appears in table 2. 

 

The increase of the aliphatic contribution to the fragments F32, F34 an F45 by longer 

aliphatic chains straight forward leads to increase the permeability of human skin. 

Without further considerations Cronin et al. [11] and Pots and Guy [40] proposed that a 

molecular size of substituent have played a central role in the increase of the permeation 

human skin coefficient. Hence they emphasize the strong dependence of permeation in 
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human skin on the compounds size. According their regression coefficient an increase in 

molecular size leads to an increase in absorption. 

As it is seen from the fragments F33 and F34, these fragments have a slightly higher 

absorption; it does not satisfy Cronin et al. [11] and Pots and Guy [40] conclusion. Even 

though certain shift of the ramification of the fragments F33 and F34, do not provide 

steady changes in their hydrophobicity. On the basis of the above results we supported 

that the hydrophobicity determines the absorption, but no the molecular size. 

In fragments F19 when we compared with F37, there are  a smaller contribution of benzene 

ring to the hydrophobicity, but this fragment showed a higher sorption due to their 

interaction with the positive fraction of proteins and others receptors in human skin.  

Other example of predominance of the electronic interactions of compounds this series 

where observed by the fragments F13, F14, F16 where could be appreciated an arrangement 

of the contribution F16 > F13 > F14. This behavior obeys to ability of these amines to form 

hydrogen bonding. The fragment F16 corresponds to amine, which has a conjugated 

double bond, hence it stimulates and strong this kind of interaction. Thus it is clearly the 

negative contribution of F14 to the absorption. We can conclude that the ability to the 

formation of hydrogen bonds between compounds and proteins prevents their absorption 

across the human skin. 

Finally, when the number of halogen is increased in a fragment of these families (F23, F30, 

F31); (F24, F43, F44) a remarkable increase of the absorption coefficient is observed. This is 

the special interest for some time due to the toxicological properties of these compounds. 

Müller recently demonstrated how, in general sense an increasing of the halogen atoms in 

a chemical structure increase the agonist effect of the adenosine receptors [41]. 

Therefore, this involve that possess a big absorption coefficient in human skin and for 

that reason is possible that this compounds present a higher trouble for their toxicology 

effect in the body, property not desirable for new potential drugs. 

For this reason combine models are necessary in the future for resolve this type of 

problems. 

 

CONCLUDING REMARKS 
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     We have shown that the TOPS-MODE approach is able to describe the permeability 

of different compounds through human skin. In fact, we have developed a model for 

predicting the permeability coefficient of a data set of 114 permeants, which is both 

statistically and chemically sound. This model explains more than 84% of the variance in 

the experimental permeability coefficients and shows good predictive ability in cross-

validation. Therefore, the spectral moments show a performance, which suggests that 

they can be used in new QSPR applications. 

On the other hand, the main advantage of using a TOPS-MODE approach in 

QSPR/QSAR has been confirmed again in this work. This approach is able to derive 

group contributions and simultaneously provides the means of interpreting them thus 

contributing to our understanding of the physicochemical or biological processes 

involved. Finally, the present results were compared to others obtained in previous works 

and evidence was obtained on the similarity of the properties that explain the 

phenomenon.  
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