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_______________________________________________________________________________________ 
Abstract- The unify representation of spectral moments, classic topologic indices, quadratic indices, and 
stochastic molecular descriptors shown that all these molecular descriptors lie within the same family. 
Consequently, the same priori probability for a success quantitative-structure-activity-relationship (QSAR) 
may be expected no matter which indices are selected.  Herein, we used stochastic spectral moments as 
molecular descriptors to seek a QSAR using a database of 221 bioactive compounds previously tested 
against diverse RNA-viruses and 402 non-active ones. The QSAR model thus obtained correctly classifies 
90.9 % of compounds in training. The model also correctly classifies a total of 87.9 % of 207 compounds on 
additional external predicting series, 73 of them having anti-RNA-virus activity and 134 non-active ones. In 
addition, all compounds were regrouped into five different subsets for leave-group-out studies: 1) anti-
influenza, 2) anti-picornavirus, 3) anti-paramyxovirus, 4) anti-RSV/anti-influenza, and 5) broad range anti-
RNA-virus activity. The model has retained overall accuracies about 90 % on these studies validating model 
robustness. Finally, we exemplify the practical use of the model with the discovery of compounds 124 and 
128. These compounds presented MIC50 values = 3.2 and 8 µg/mL against respiratory syncytial virus (RSV) 
respectively. Both compounds have also low cytotoxicity expressed by their Minimal Cytotoxic 
Concetrations > 400 µg/mL for HeLa cells. The present approach represent and effort toward a formalization 
and application of molecular indices in bioinformatics, bioorganic and medicinal chemistry. 
_______________________________________________________________________________________ 

 
In the field of bioinformatics sciences, Quantitative-Structure-Activity Relationships (QSAR) has 

emerged due to the interest of researchers worldwide on finding timely and rational ways for the discovery 
of new drug-like compounds including anti-bacterial, anti-parasitic, and anti-viral compounds.1-8 The QSAR 
directed discovery of antivirals active against RNA viruses has become a forefront problem as the result of 
the widespread use of relative by few commercial drugs causing the emergence of antiviral-resistant 
pathogens and the large amount of orphan viral diseases. The application of QSAR techniques and 
molecular descriptors for antivirals discovery have relayed mainly on anti-HIV-viral drugs. As a 
consequence, remains practically unexplored the field of QSAR devoted to other anti-RNA-viral 
compounds.9 In recent years, along with this discovery process we have been explored a large number of 
nucleosides analogues, which have been successfully designed and synthesized.10 Panoply of molecular 
descriptors defined imposes the necessity of unify theories for the systematization of molecular indices 
which may guide authors in their selection.   

Molecular descriptors can be grouped in families in order to facilitate their study. Almost all of the more 
used molecular descriptors can be expressed by means of vector-Matrix-vector (v ·M· vT) representations. 
For instance, the first molecular descriptor defined in a chemical context the Wiener index W (equation 1) is 
a quadratic form. In addition, several other classic Zagreb indices M1 (equation 2) and M2 (equation 3), 
Harary number H (equation 4), Randic invariant χ (equation 5), valence connectivity index χv (equation 6), 
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the Balaban index J (equation 7), the Moreau-Boroto autocorrelation ATSd (equation 8).11-13 More recently 
other topologic indices based on quadratic forms as the so called quadratic indices qk(X) (equation 9) have 
been introduced by Marrero et al.:14 
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All the vectors and matrices used in expressions (1) to (9) have been exhaustively explained in the literature 
reported, see therein for details.15 

On the other hand, several studies have made use of the concept of molecular descriptors based on spectral 
moments.16-40 This group of molecular descriptors has classically been considered as a different group with 
respect to classic topologic indices. Spectral has presented several applications in different context such as 
polymers sciences, solids chemistry, and theoretic chemistry. In QSAR and bioorganic chemistry several 
applications have been reported by Gónzalez M.P. et al.,30-34 Morales A.H. et al.,34,35 Cabrera-Pérez et al.,36-

38 Molina et al.,39 Estrada and Peña,40 and others. All these spectral moment indices used in the above 
mentioned studies and others including the moments of energy µ(H), the self-return walking counts srwck, 
the spectral moments of bond µ(B) and  bond weighted adjacency matrices µ(dB) matrices, the I3 number, 
the Kirchhoff number Kf,13,16-40 and our stochastic moments SRπk as well,41-46 have to be represented as the 
trace (Tr) of the corresponding matrices and classified as mentioned above as a group apart from v·M·vT 
forms indices if one follows classic ideas. Where, atom adjacency (A), bond adjacency (B), Hückel 
Hamiltonian (H), bond weight diagonal matrix (W), Laplacian (L), backbone dihedral angles A(φ, Ψ, ω) 
and Markov (1Π) are well known matrices.16-40 Particularly, our group has worked on a Markov model that 
use stochastic spectral moments SRπk as descriptors to encode molecular structure with applications in 
bioinformatics, nucleic acids, proteins and bioorganic medicinal chemistry research:41-47  
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Interesting steps have been given towards the unification of all topologic indices in a single framework by 
means of the vector-matrix-vector (v·M·vT) approach. However, no advances have appeared on the 
incorporation of spectral moments to this promising picture. The unification of molecular indices 
mathematical representation may facilitate not only its study by researches worldwide but comprehension of 
its nature. In the present work, we are going to use the Krocnecker vector ο in order to represent any spectral 
moment molecular index as a quadratic form of the corresponding matrix:  
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The Kröcnecker elements vector ο have a simple but dynamic and opportune definition having elements 
mδij = 1 for every jth column if the element is being multiplied by an element in the main diagonal of the 
given matrix, and mδij = 0 otherwise. As can be noted equations (19) to (25) are v·M·vT representations, this 
fact reveals that spectral moments and stochastic moments may be classified together with several topologic, 
flexibility, and quadratic indices. That is to say, they all belong to the same family giving a more unify and 
tractable picture in mathematical chemistry terms. By opposition to classic forms we have named SRπk as the 
stochastic moments v·M·vT forms. Expanding equation 24 illustrates more clearly the similarity between 
classic topologic indices defined in the past, stochastic spectral moments defined by our group in 2002, and 
Marrero-Ponce et al quadratic indices.1, 2, 11-14, 41-50 
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Being, the probabilities for the distribution of electrons between the ith and the jth atom functions of their 
electronegativities.51,52 So, the SRπk values describe the distribution of electrons to atoms at distance k each 
other. The definition of different 1П matrices with applications in bioorganic chemistry have been largely 
discussed in the literature reported by González-Díaz et al. 53-55 The above results demonstrate that classic 
topologic indices, quadratic indices, spectral moments, and stochastic indices lie together within the same 
family.  

Consequently, we can expect at first instance the same probability of success selecting one of them for 
different QSAR studies including antimicrobial agents.56,57 Thus, the aims of this study were unifying 
spectral with classic molecular descriptors and develop a new a QSAR model for anti-RNA-viral activity, 
based on stochastic spectral moments. The linear discriminant analysis (LDA)58-60 was selected as a simple 
statistical tool in order to select anti-RNA-virus active compounds from heterogeneous series. The selection 
is based besides in the experience of our group to model biological properties of heterogeneous series of 
compounds including carbonucleosides.61 In this sense, the present study exemplifies the use of the QSAR 
reported by means of the prediction, synthesis, characterization, and experimental corroboration of the anti-
RSV-activity of novel 1, 2-disubstituted carbocyclic analogues of nucleosides. 

In order to seek and validate a model for discriminating between anti-RNA-virus and non-active 
compounds we have given the following steps: 

a) The initial data composed by a large number of active and non-active compounds was collected from 
the literature and it is presented in this work in Table 1SM and Figure 1SM as a supplementary 
material (SM) file.62,63  

b) The molecular structure of all compounds was encoded with the stochastic spectral moments SRπk(ω), 
which were calculated using the software BIOMARKS version 1.0 (Biochem-informatics  
Markovian Studies).64 

c) The initial data was split at random into four different sub-series (see Table 1SM and Figure 1SM):  
- Training series with 221 active compounds. 
- Training series with 402 non-active compounds. 
- Predicting series with 73 active compounds. 
-  Predicting series with 134 non-active compounds.  

d) The Randič’s orthogonalization procedure was applied to each SRπk(ω) variable obtaining the 
corresponding orthogonal variables IOk in order to avoids collinearity among variables and model 
over-fitting, where the superscript I represent the order of importance of the variable assigned after the 
forward stepwise LDA analysis. 65 

e) The QSAR-LDA analysis was developed with the software Statistica 6.0.66 
f) The statistical parameters for different models were compared to decide the model which better fits 

the training data. The biological activity was encode by a dummy variable aRNAva, acronym of anti-
RNA-virus activity, aRNAva = 1 for active compounds and aRNAva = -1 for non-active ones. The 
analysed parameters were Wilk’s λ statistic; Mahalanobis squared distance (D2), Fisher ratio (F) and 
the p-level (p). We also inspect the percentage of good classification and the proportion between the 
cases and variables in the equation or variables to be explored in order to avoid over-fitting or chance 
correlation. 67 

g) Model predictability was tested with an external prediction series; those compounds were never used 
to develop the classification function.68 

h) A posterior probability P(%) was assigned to each compound for scoring its biological activity.69 
i) Finally, leave-group-out experiments were carrying out to assess the model robustness by checking 

the stability of all parameters.70   
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As a result of the analysis of collinearity we detected high regression coefficients among the SRπk values for 
the data. For instance all regression coefficients among the 5 calculated descriptors SRπ0 SRπ1 SRπ2 SRπ3 and SRπ4 
were higher than 0.9. Subsequently, we carried out a Randič orthogonalization procedure, which results are 
depicted in Table 2SM of the supplementary material. Afterwards, we carried out an exhaustive forward 
stepwise analysis; the best discriminant function we found was the following:  
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 Where, N is the number of compounds in the model and %T, %(+), %(-) are the overall percentage of 
good classification for anti-RNA-virus and non-active compounds. Moreover, λ is the Wilk’s statistics and 
∆λ% = 100 x (λs - λs - 1)/ λs, and represent the differential decrement in λ in the step s with respect to former 
step (s - 1) in the forward stepwise analysis. Table 2SM  also depicts Fm, pm, and Fl, pl values, which are 
equal to the Fisher’s ratio and the p-level for the model as a hole (m) and the last variable entered, 
respectively (see supplementary material). 31,71 

As depicted in Table 2SM, supplementary material, the present model with only two variables also 
presented the higher decrement of λ (λ = 0 ideal separation of groups) with respect to models with 1, 3, 4, 
and 5. This model also present a high value for ρ,6 a parameter which controls the ratio (number of data 
points)/(number of fitted parameters), which is expected to be higher than 4 for this kind of analysis. The 
selected model has shown overall accuracy of 90.9 % for training series and 87.9 % overall predictability for 
external predicting series. In the case of non-active compounds the model correctly classifies 91.5 of non-
active compounds in training series (see complementary material). On the other hand, the model correctly 
classified 119 out of 134 of non-active compounds (88.8 %) in predicting series. With respect to active 
compounds the model also has shown a good classification of 89.6 % in training series and 86.3 % in 
predicting series (see Table 1 upper part for summary as well as Table 1SM and Figure 1SM of the 
supplementary material file for details). In the leave-group-out analysis the model shown overall accuracies 
of 91.8, 90.8, 90.45, 90.1, and 88.3% after elimination from the starting data of all compounds having anti-
influenza, anti-picornavirus, anti-paramyxovirus, both anti RSV and anti-influenza, or broad range anti-
RNA-viral activity respectively (see Table 1). Accordingly, the robustness of the model for the prediction of 
anti-RNA-viral compounds, could be assessed after leave-group-procedures. Briefly, after removing 
different groups of compounds all the parameters of the model lie within the accepted intervals after 
elimination of different groups of drugs from the model (Table 1 bottom part). The group that caused the 
higher destabilization of the model when removed was the composed by antiviral drugs with broader activity 
against different RNA viruses. This fact it is justified because it is not only the group with the largest 
number of compounds (N out = 340) but also the one with the higher structural diversity. In any case, all the 
values for the parameters lie within the limits that are classically accepted for LDA-QSAR models in 
bioorganic medicinal chemistry see for instance Cabrera-Pérez et al. work.72,73 
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Table 1. Accuracy, predictability, and robustness analysis. 
 

Accuracy and Predictability Analysis (model with 2 variables) 
Training Series Predicting Series 

 Percent Active Non act.  Percent Active Non act. 
Active 89.6 198 23 Active 86.3 63 10 
Non active 91.5 34 368 Non active 88.8 15 119 
Total 90.9   Total 87.9   

Leave-group-out-Robustness-Analysis 
(including together training and predicting series of anti-RNA-virus drugs) 

 Influenza Picornavirus Paramyxovirus RSV and Influenza Broader Activity 
%T 91.8 90.8 90.45 90.1 88.03 
%(-) 91.3 91.3 91.3 91.3 91.3 
%(+) 93 89.8 88.9 87.8 73.6 
N out 260 235 215 218 340 
N in 570 595 615 612 490 
λ 0.44 0.49 0.47 0.51 0.75 
F 356.02 314.18 343.09 295.53 82.9 
P 0.000 0.000 0.000 0.000 0.000 
      

 
Last, we are going to exemplify the use of the model in practice. In view of the success of the present 

model, we became interested in using it in our main field of research, 1,2-disustituted carbonucleosides, in 
which the usual 1,3 substitution pattern of the carbocycle is replaced by a 1,2 pattern. Compounds 124 and 
128 were selected among other compounds as examples predicted by LDA-QSAR with high probabilities 
(P(%) = 85.5 and ∆P% = 74.3 respectively) and were afterwards synthesized and assayed. It must be noted 
that compound 123 was predicted as inactive, P(%) = 43.0; however, as it is a synthetic precursor of 
compound 124 it was also evaluated as an additional corroboration of the validity of the model. The three 
compounds (123, 124, and 128) where inactive against Vesicular stomatitis virus and Coxsackie virus strain 
B4. Compound 123 was also inactive against RSV as predicted by the model. Conversely, similar antiviral 
activity, MIC50 values of 3.2 and 8 µg/mL, were detected against RSV, as compared to 1.92 µg/mL for 
control antiviral drug ribavirin, correctly predicted by the model with P(%) = 90.1. The theoretical 
probabilities and the results of the biological assay of the compounds against Vesicular stomatitisvirus, 
Cosackie virus B4, Respiratory syncytial virus, as well as cytotoxicity to HeLa cell line were depited in 
Table 2. 
 
Table 2. Antiviral* activity and cytotoxicity** of assayed chemical compounds in human epithelial cells 
(HeLa). 

Virus Compound 
Name Predicted P(%) Vesicular 

stomatitis Coxsackie B4 Respiratory 
syncytial 

Cytotoxicity 

123 43.0 >80 >80 >80 400 
124 85.5 >80 >80 3.2 400 
128 74.3 >200 120 8.0 >200 

Ribavirin 90.1 16.0 48.0 1.92 >400 
*MIC50: Minimal Inhibitory Concentration 50 (µg/mL). **MCC: Minimal Cytotoxicity Concentration (µg/mL). 

 
Compounds 123, 124, and 128 were efficiently synthesized from the (±)-cis-2-(amino)cyclohexylmethanol 

following Scheme 1. To obtain the adenine derivative 124, the aminoalcohol was condensed with 5-amino-
4,6-dichloropyrimidine to give the substituted diaminopyrimidine 122, which afforded 6-chloropurine 123 
by reaction with ethylorthoformate in acidic medium. The 6-amino derivative 124 was obtained by exchange 
with ammonium hydroxide. To obtain the 2-amino-6-chloro derivative 128, the starting aminoalcohol was 
reacted with 2-amino-4,6-dichloropyrimidine to give 125. Afterwards a second amino group was introduced 
at position 5 of the pyrimidine ring by reaction with p-chlorobenzenediazonium chloride followed by 
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reduction to afford the compound 127, which was cyclized with ethylorthoformate to obtain compound 128 
(see experimental section in supplementary material file).74,75 
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Figure 1. Reagents and conditions: a) 5-amino-4,6-dichloropyrimidine, Et3N, n-BuOH, reflux 24h, 71%; b) 
CH(OEt)3, HCl 12M reflux 12h, 123: 71%, 128: 60%; c) NH4OH, reflux 4h, 99%; d) 2-amino-4,6-
dichloropyrimidine, Et3N, n-BuOH, reflux 24h, 60%; e) p-chloroaniline, NaNO2, HCl 12M, 0 ºC, 80%; f) 
Zn, AcOH, EtOH, reflux 1h, 30%. 

 
In closing, the unification of many molecular descriptors within a single family allows the researcher to 

begin the study with any one of them without preference. The idea of the unification of different molecular 
descriptors makes also easier their physicochemical interpretation as in recent bioorganic medicinal 
chemistry communications by our group.76,77 Conversely, several classic topologic indices equations (1 to 
22) including Marrero-Ponce’s et al. stochastic forms sk(X) (equation 25) , very similar to our earlier 
stochastic indices, linear forms fk(X) (equation 26), and the above mentioned quadratic forms qk(X) 
(equation 27) lack of direct physical interpretation.48-50 By opposition, our stochastic forms can be used to 
derive electrostatic and thermodynamic parameters, see recent works.76,77  
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 Where, M, and S are the multi-graph and the normalized multi-graph adjacency matrices, and w, u are the 
electronegativity and the unitary vector.48-50 In this work, stochastic spectral moments selected a priori have 
been successful for the in silico prediction of anti-RNA-viruses activity. The model has been validated in 
terms of accuracy, predictability, and robustness to data variation. Taking into consideration that the model 
was developed with a highly heterogeneous and representative data base of compounds one can expect a 
broad range of applicability for it, as exemplify here on the field of 1,2-carbocyclic analogues of 
nucleosides. The model confirms the utility of stochastic molecular descriptors introduced by González-Díaz 
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et al.78,79 This model may, as the formers, become a useful tool in bioinformatics, bioorganic and medicinal 
chemistry for the discovery of antiviral compounds.80,81 
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