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Abstract: Most hydrological and water resources researchers prioritize the development of an accu-

rate sediment prediction model. Several conventional techniques have failed to accurately predict 

suspended sediment. Because of the intricacy, non-stationarity, and non-linearity of sediment move-

ment behavior in streams and rivers, many techniques fall short. Over the last several years, there 

have been meaningful theoretical improvements in the understanding of machine learning ap-

proaches, vis a vis strategy for the implementation of their processes and uses of the technic to prac-

tical and hydrological issues. To produce the desired output, machine learning models and other 

algorithms have been employed to predict complicated non-linear connections and patterns of huge 

input parameters. This paper examines a few key works of literature on sediment transport predic-

tion while focusing on a variety of machine learning applications. Sediment transport models aided 

by machine learning have attracted a growing number of researchers in recent years. As a result, 

they must gain in-depth knowledge of their theory and modeling methodologies. Furthermore, this 

chapter includes an overview of the machine learning technique and other developing hybrid mod-

els that have produced promising outcomes. This overview also includes various examples of suc-

cessful machine learning applications in sediment prediction. 

Keywords: Machine Learning Techniques; Artificial Neural Network; Sediment Transport Predic-

tion; Suspended Sediment 

 

1. Introduction 

The understanding of river hydraulics is important in water resources, reason why 

hydraulic and hydrological practitioners have been advancing knowledge in sediment 

conveyance in rivers and streams for several decades. Sediment, erosion, and deposition 

modify the hydraulic shape of the channel, potentially increasing flood frequency and 

causing navigation issues due to excessive deposition. Human activities, such as soil ero-

sion and other anthropogenic actions, are contributing to the increased movement of river 

sediment. Additionally, these activities are also reducing the flux of sediment to the 

coastal zone by retaining it in reservoirs [1]. The estimation of sediment transport rates in 

rivers and streams holds significant importance in various aspects such as erosion, sedi-

mentation, management of flooding, enduring morphological assessment, and other pur-

poses. Sediment samples collected physically arguably provide the most precise data for 

understanding river sediment dynamics and transport [2]. There are a number of 
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techniques utilized for this purpose including depth integrating, isokinetic samplers [3] 

which constitute substantial representation of the water column in a river cross section 

[4]. Similarly, larger particles such as gravels and cobbles moving along the riverbed are 

measured using the pressure difference bedload and thereafter the sediment concentra-

tion processed in the laboratory using the procedures as described by American Society 

for Testing and Materials, 2000 [5]. 

Over the past few decades, there has been extensive research leading to the develop-

ment of numerous models for sediment transport. Regrettably, there is often doubt re-

garding the accuracy of these models, with many real-world situations yielding prediction 

errors deemed unacceptably high. References [6]–[8] and other researchers have diligently 

examined and documented the effectiveness of these models. Drawing from these obser-

vations, it is plausible to assert that the movement of sediment is an immensely intricate 

process that defies representation through a deterministic mathematical framework [9].  

Emerging modelling paradigms, such as Machine Learning (ML), have been ob-

served in recent times. ML pertains to the field of study that focuses on the creation and 

refinement of models capable of acquiring knowledge and making predictions via the 

analysis of empirical data. This development has created novel prospects for modelling 

processes that lack sufficient knowledge to establish a pertinent mathematical framework 

or possess insufficient data to calibrate a suitable model. ML is currently being employed 

in nearly all scientific disciplines as a substitute or supplement to the conventional phys-

ically based process modelling methodology. They utilize a variety of modeling method-

ologies and techniques, encompassing Artificial Neural Networks (ANN), decision trees, 

fuzzy logic, support vector machines, genetic programming, Bayesian networks, and 

other pertinent techniques [1]. 

2. Conventional Sediment Estimation Approach 

Sediment rating curve (SRC) has been widely used and arguably considered the con-

ventional approach for sediment estimation and prediction. The technique establishes es-

timation of suspended sediment concentration by a correlation between discharge and 

sediment concentration. In this method, discharge serves as a surrogate variable encom-

passing the cumulative impact of all mechanisms influencing erosion and the transport of 

sediment within the river system [10]. Typically, rating curves are expressed as power 

functions, and their general form is represented as follows: 

𝑆 = 𝑎𝑄𝑏           (1) 

Where: 

S = suspended sediment concentration (mg/l) 

Q = river discharge (m3/s)  

a and b = regression coefficients 

Variations in the behavior of rating curves are evident across diverse rivers, primarily 

attributed to the correlation observed between suspended sediment concentration and 

discharge across varying orders of magnitude. This relationship is contingent on the geo-

graphical location. The widespread acceptance of sediment rating curves stems from their 

facile establishment, requiring a distinct and comparatively modest dataset [10]. Addi-

tionally, these curves can be formulated by utilizing turbidity data calibrated with sus-

pended sediment data, serving as a surrogate variable for suspended sediment concentra-

tion, particularly in scenarios where only a restricted number of sediment samples are 

accessible. 

3. Machine Learning Approaches 

ML has been effectively employed in various applications within the field of water 

resources engineering. For instance, ML techniques have been successfully utilised in 
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hydrology, as demonstrated in the ASCE 2000 study. ML has also been applied to water 

system control, water quality evaluations, and the establishment of stage-discharge rela-

tions, among other areas. The application demonstrates that ML does not produce original 

insights into the underlying process. Instead, utilizes existing knowledge of the process to 

choose input and output parameters. It then employs contemporary regression techniques 

to enhance the correspondence between the observed data and the model's predictions. 

The subsequent text provides a comprehensive depiction of the machine learning algo-

rithm. The aim is to establish a functional relationship between a set of input vectors and 

their corresponding target output vectors, using a provided collection of input vectors 

and target output vectors. The input vector x gives rise to the target vector z through the 

function f, but the specific function f is not known: 

                                                          𝑧 = 𝑓(𝑥)                                    (2) 

The objective of the algorithm is to recognize or learn the function f. We employ ANN 

as function approximation approach, among others highlighted in the subsections below 

[11]. 

3.1. Airtificial Neural Network (ANN) 

Artificial neural networks (ANNs) serve as computational tools for data processing 

and modeling, commonly employed for tasks such as estimation, forecasting, pattern 

recognition, optimization, and the exploration of relationships among intricate variables. 

According to [12], ANNs are characterized as massively parallel distributed information 

processing systems, displaying performance features reminiscent of the neural networks 

in the human brain. Derived as a generalization of mathematical models inspired by hu-

man cognition or neural biology, ANNs adhere to principles outlined by [13], including: 

(i) information processing by individual elements referred to as neurons; (ii) signal trans-

mission between nodes through connecting links; (iii) association of each connection link 

with a weight representing its strength; and (iv) application of a nonlinear transformation, 

known as an activation function, by each node to determine its output signal. The distin-

guishing capability of ANNs lies in their capacity to learn the relationships between in-

puts and outputs from examples without physical intervention. Additionally, ANNs pos-

sess the remarkable ability to discern patterns between input and output variables with-

out requiring supplementary explanations [14]. In the domain of hydrology, hydraulics, 

and water resources management, ANNs have found successful application in tasks such 

as flood forecasting, groundwater level prediction, and rainfall-runoff estimation. 

The most prevalent type of artificial neural network (ANN) employed in sediment 

prediction research is the multilayer perceptron. This ANN architecture is composed of 

multiple layers, including an input, one or more hidden, and an output. Each layer is 

made up of artificial neurons, also referred to as nodes. In the input layer, data is fed into 

the network through a node, with each node typically corresponding to an input variable. 

Hidden layer comprises of several different nodes determined through a combination of 

experience, empirical formulas, and systematic study. The number of nodes in the output 

layer of ANN may be different based on the number of variables that require prediction. 

Information transmission within the network, from the input layer through the hidden 

layer, and ultimately to the output layer, involves a sequence of transformations carried 

out by transfer functions at each node. These transfer functions introduce non-linearity 

into the ANN [15].  

In the context of sediment transport prediction, where numerous parameters pur-

portedly influence sediment discharge or concentration, researchers have investigated the 

impact of varying input variables on the performance of ANN predictive models.  

3.2. Genetic Expression Programming (GEP) 
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Gene Expression Programming (GEP), akin to Genetic Algorithms (GAs) and Genetic 

Programming (GP), operates as a genetic algorithm, employing populations of individu-

als selected based on their fitness and introducing genetic variation through one or more 

genetic operators (Mitchell, 1996). The distinguishing feature among these three algo-

rithms lies in the nature of the individuals they employ: GAs utilize linear strings of fixed 

length (chromosomes), GP employs nonlinear entities of varying sizes and shapes (parse 

trees), and GEP encodes individuals as linear strings of fixed length (the genome or chro-

mosomes), which are subsequently expressed as nonlinear entities of diverse sizes and 

shapes, such as simple diagram representations or expression trees [16].  

The synergy between chromosomes (replicators) and expression trees (phenotype) in 

GEP necessitates an unambiguous translation system, converting the language of chro-

mosomes into the language of expression trees (ETs). The structural organization of GEP 

chromosomes, as elucidated in this study, establishes a genuinely functional geno-

type/phenotype relationship. Any modification made in the genome consistently yields 

syntactically correct ETs or programs, owing to the diverse set of genetic operators devel-

oped to introduce genetic diversity in GEP populations, which unfailingly generates valid 

ETs. Consequently, GEP stands as an artificial life system, firmly established beyond the 

replicator threshold, capable of adaptation and evolution. The merits of GEP, drawn from 

observations in nature, are notable, with simplicity being paramount. The chromosomes 

are uncomplicated entities: linear, compact, relatively small, and amenable to genetic ma-

nipulation (replication, mutation, recombination, transposition, etc.) [17]. In contrast, the 

ETs exclusively manifest the characteristics of their respective chromosomes; they serve 

as the entities subjected to selection, and based on fitness, they are chosen for reproduction 

with modification. During reproduction, it is the chromosomes of the individuals, not the 

ETs, that undergo replication with modification and are passed on to the succeeding gen-

eration. These characteristics render GEP highly versatile, surpassing existing evolution-

ary techniques. Notably, in the most intricate problem addressed in this study—the evo-

lution of cellular automata rules for the density-classification task—GEP outperforms GP 

by more than four orders of magnitude [11].  

3.3. Bayesian Network (BN) 

BNs are a type of probabilistic estimation technique that addresses conditional prob-

abilities establishing connections between variables, albeit in a discretized manner. Statis-

tical operations encompass several techniques, such as marginalisation, which involves 

integrating across a specific portion of a broader distribution. This approach utilises the 

available data to define restrictions and make inferences [18]. The utilization of Bayesian 

Networks (BNs) presents a robust approach for the quantification of intricate relation-

ships among variables and the derivation of statistical inferences, as highlighted by [19]. 

This modeling framework offers numerous advantages, including a minimal requirement 

for sample size, explicit elucidation of uncertainty, lucid visualization of variable interde-

pendencies, facile integration of expert knowledge, and dynamic engagement with new 

data and decision tools, as underscored by [20]–[22]. Owing to these merits, BNs demon-

strate proficiency in addressing complex systems, leading to their widespread application 

in environmental modeling, as evidenced by studies conducted by [20], [21] and [22]. 

3.4. Adaptive Neuro Fuzzy Inference System (ANFIS) 

ANFIS is commonly employed in the field of environmental and hydrology engi-

neering to effectively tackle nonlinear challenges pertaining parameters like rainfall, in-

flow, and dam water stage. The architecture of fuzzy system comprises three primary 

components, namely the Fuzzifier, the Fuzzy Data Set, and Defuzzifier. Fuzzification in-

volves the conversion of data into vectors, which are subsequently utilised in the fuzzy 

database. On the other hand, the defuzzification process entails the conversion of the vec-

tor back into its original form, representing actual data. The fuzzy database is partitioned 
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into two distinct components, namely fuzzy rule base and inference system. The fuzzy 

rule basis is identified using IF- THEN conditional statement. There are majorly three var-

iant of fuzzy interface systems, namely Sugeno's, Tsukamoto's, and Mamdani's, catego-

rised based on the specific interface operation exhibited by their IF-THEN rules. The ap-

proach proposed by Sugeno is characterised by its compactness and computational effi-

ciency. As a result, it yields crisp outputs without wasting a lot of time and theoretically 

inflexible defuzzification process associated with Mamdani's technique [23].  

Neuro-fuzzy systems, which amalgamate Artificial Neural Networks (ANN) with 

fuzzy systems, offer the distinct advantage of facilitating a straightforward conversion of 

the final system into a set of if-then rules. The fuzzy system can be conceptualized as a 

neural network structure, wherein knowledge is distributed across connection strengths. 

Research and applications in neuro-fuzzy inference strategies underscore the benefits of 

hybrid systems in various domains, such as leveraging existing algorithms designed for 

Artificial Neural Networks (ANNs) and the direct adaptation of knowledge articulated 

through a set of fuzzy linguistic rules [24]. 

An adaptive network, as implied by its nomenclature, comprises nodes and direc-

tional links, with its overall input-output behavior dictated by a collection of adjustable 

parameters that interconnect the nodes. The adaptive system employs a hybrid learning 

algorithm to identify parameters specific to Sugeno-type fuzzy inference systems. This 

entails the utilization of a combination of the least-squares method and the back-propa-

gation gradient descent method for training the parameters of Fuzzy Inference System 

(FIS) membership functions to replicate a given training dataset. The learning process un-

folds in two principal phases. During the forward phase, consequent parameters ascertain 

the least squares estimate, while in the backward phase, error signals—representing de-

rivatives of the squared error with respect to each node output—propagate backward 

from the output layer to the input layer. In this backward pass, the premise parameters 

undergo updates through the gradient descent algorithm. The learning or training phase 

of the neural network is a dynamic process aimed at determining parameter values that 

sufficiently align with the training data. The Adaptive Neuro-Fuzzy Inference System 

(ANFIS) training employs alternative algorithms to minimize training error, with a com-

bination of the gradient descent and least squares algorithms facilitating an efficient 

search for optimal parameters. A key advantage of this hybrid approach is its accelerated 

convergence, attributed to the reduction in search space dimensions inherent in the back-

propagation method [25]. 

4. Hybrid Machine Learning Models 

Aside from the commonly used machine learning techniques, researchers have sug-

gested and used innovative techniques for sediment prediction. [26] pioneered the use of 

Support Vector Machine (SVM) in sediment prediction, which was tested on three Malay-

sian rivers with promising results. The use of fuzzy logic and genetic algorithms has taken 

center stage in sediment prediction; numerous techniques, including the adaptive neuro-

fuzzy inference system and its variants with fuzzy c-means clustering, have been applied, 

providing good predictions. Some prior works, such as [27], use ANN paired with neuro-

fuzzy models to estimate sediment concentration. These combinations or hybrids have 

been shown to produce accurate sediment estimates and are therefore recommended for 

use.  

5. Machine Learning Applicability in Sediment Prediction 

Assessment of water body sediment concentration or load is frequently regarded as 

an important component of watershed sediment behavior. To forecast sediment concen-

tration from streamflow measurements, empirical techniques such as the creation of sim-

ple linear or multiple regression models and sediment rating curves have been frequently 

employed over time. These procedures are still used today to provide estimates of 
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sediment concentrations. Other methodologies, such as physically based, data-driven, 

and conceptual models, have been deduced and employed. Due to the laborious data col-

lection process and intricate interconnections related to sediment movement, the utilisa-

tion of data-driven algorithms may present a more suitable approach for predicting sedi-

ment [28] [29]. The utilisation of machine learning and genetic programming is gaining 

acceptance among specialists due to the non-linear correlation shown between sediment 

concentration, discharge, and other variables. Various algorithms have been effectively 

modelled and employed in the prediction of sediment conveyance in river over a period. 

These algorithms utilise multiple hydro-meteorological parameters and previous sedi-

ment data as inputs to estimate the concentration of suspended sediment or the load of 

suspended sediment. 

 In practical applications, it is usual to employ a combination of river discharge, rain-

fall, and other hydrological variables as input parameters in ML models for Suspended 

Sediment Concentration (SSC) or Suspended Sediment Load (SSL) modelling. Utilisation 

of rainfall, in conjunction with river discharge, serves as input variables for the prediction 

of suspended sediment as in [18] and [19]. Several other factors such as river stage, catch-

ment features, temperature, turbidity, and climate parameters are used as input variables 

in modelling sediment concentration for instance, a research work by [2] used ANN to 

predict sediment rating curve variables with satisfactory results. Similarly, [32] predicted 

SSL in an ungauged catchment using catchment characteristics and climate parameters as 

input. Additionally, in West Azerbaijan, Iran, the Bayesian neural network was used by 

[33] to estimate sediment discharge and results compared with ANN estimate showed 

that BN had superior accuracy with highest correlation coefficient. On the other hand, [34] 

employed the genetic expression programming technique to predict SSL and concluded 

that the model is capable of predicting SSL accurately . Besides, [35] modelled daily SSC 

for Eel River in California by using ANFIS – FCM, ANN and Evolutionary Fuzzy (EF) 

which is a combination of fuzzy logic and genetic algorithm called a hybrid model. Com-

parison of their performance reveals EF model outperforms the ANFIS – FCM and ANN. 

In the light of using hybrid models, [36] combined continuity equation and fuzzy pattern 

recognition, connoted as hybrid double feedforward neural network to predict daily SSL 

resulting in efficient estimates. Likewise, [37] used another hybrid model known as Clas-

sification And Regression Tree algorithm (CART) to successfully predict sediment with 

good estimates compared to ANN, SVM and ANFIS. 

6. Discussion 

The procedures employed for sediment transport measurement within a watershed 

typically commence with the assessment of suspended sediment levels at critical points 

in the river network. Furthermore, the examination of sediment concentration serves as a 

means to infer details regarding the variability of sediment events, offering a foundation 

for the quantification of sediment yield and load. Assessments can derive suspended sed-

iment concentrations through diverse methods, encompassing direct sampling, water 

quality sampling, and indirect surrogate measurements such as turbidity. Additionally, 

advanced techniques involving the utilization of sensors like acoustic Doppler current 

profilers, remote sensing, laser diffraction, and optical backscatter are employed 

[38].Some sediment studies introduce an additional element, such as the characterization 

of sediment composition, to categorize sediment sources utilizing the sediment finger-

printing technique [39]. 

 Monitoring sediment transport is an arduous task requiring significant resources 

and labor. Consequently, numerous sediment studies resort to modeling techniques to 

estimate or forecast sediment transport and discharge. Modeling approaches encompass 

traditional empirical relationships, such as the suspended sediment rating curve and the 

universal soil loss equation (USLE). Recent advancements have seen the emergence of 

physically based models designed to replicate various catchment sediment processes, en-

compassing the simulation of sediment transport, hillslope processes, and riverbank 
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erosion [40]. Notably, there is a heightened focus on data-driven models in studies where 

the estimation of suspended sediment load takes precedence. These models encompass 

diverse methodologies, including multiple linear regressions, artificial neural networks, 

genetic programming, Adaptive Neuro-Fuzzy Inference System, Bayesian methods and 

several others. However, these methods are characterized by some merits and demerits 

(as presented in Table 1). Sediment rating curve has been a traditional and widely used 

method in hydrology for predicting sediment transport based on streamflow. Its simplic-

ity and ease of application make it an attractive choice, especially in regions with limited 

data availability. However, SRCs are known for their limitations in capturing complex 

non-linear relationships and are highly dependent on the assumption of stationarity. The 

reliance on historical data may hinder the adaptability of SRCs in dynamically changing 

environments. 

 

Table 1. Comparison of some selected sediment prediction techniques. 

Technique Merit Demerit 

Sediment Rating Curve 

(SRC) 

Effective in low-data regions Assumption of stationarity 

Historical data utilization 
Inability to capture non-linear-

ities 

Widespread applicability 
Challenges in urbanized catch-

ments 

Artificial Neural Net-

work (ANN) 

Non-linear pattern recognition 
Data-intensive training re-

quirements 

Adaptability to complex relation-

ships 

Dependence on training data 

quality 

Ability to learn from data Risk of overfitting 

Genetic Expression 

Programming (GEP) 

Automatic discovery of mathe-

matical relationships 

Sensitivity to parameter set-

tings 

Effective in capturing non-linear 

relationships 

Dependency on population 

size 

 
Model transparency and inter-

pretability 
Complexity in Rule Extraction 

Bayesian Network 

(BN) 

Model transparency through 

graphical representation 

Dependency on accurate prior 

information 

Applicability to multivariate sys-

tems 

Limited applicability in dy-

namic systems 

 
Effective in handling incomplete 

information 

Challenges in learning struc-

ture from data 

 Handling of uncertainties 
Dependency on quality of 

training data 

Adaptive Neuro Fuzzy 

Inference System (AN-

FIS) 

Hybridization of neural networks 

and fuzzy logic 
Sensitivity to parameter tuning 

 
Effective in modeling non-linear 

relationships 

Dependency on quality of 

training data 

 

On the other hand, ANNs has gained popularity in sediment prediction and estima-

tion because of its ability to model complex relationships and adapt to non-linear patterns. 

The approach's effectiveness is contingent upon the availability of extensive datasets for 

training, and the potential for overfitting poses a challenge, especially with limited data. 

Additionally, the non-availability of a physical mathematical model or equation can make 

it difficult to interpret and understand the underlying processes governing its predictions. 
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 The GEP is a symbolic regression methodology that evolves mathematical expres-

sions to represent sediment transport relationships. GEP's ability to generate explicit 

equations enhances model transparency, aiding in the understanding of underlying pro-

cesses. It is worthy to note that, GEP performance may be sensitive to parameter settings, 

and its application may be limited in cases where the sediment transport process involves 

intricate non-linearities. In addition, the BN provide a probabilistic framework for mod-

eling sediment transport, incorporating uncertainties and dependencies. The explicit rep-

resentation of probabilistic relationships enhances model interpretability. The method has 

some drawbacks including requirement of prior knowledge for constructing reliable prob-

ability distributions, and the effectiveness is contingent on the availability of accurate 

prior information. 

 Furthermore, ANFIS are known to a combination or hybrid model having the 

strength of fuzzy logic and neural networks. Providing a hybrid prowess for sediment 

prediction. Its ability to incorporate expert knowledge and handle uncertainties is advan-

tageous. Besides, ANFIS models may be sensitive to parameter tuning, and the effective-

ness is contingent on the appropriate selection of fuzzy rules. The interpretability of the 

fuzzy rules, while better than ANNs, may still pose challenges. 

 In light of the advantages and drawbacks outlined for each method discussed in this 

section and Table 1, researchers and practitioners should carefully evaluate the distinctive 

characteristics of the study area, data availability, and the desired level of model inter-

pretability when opting for a sediment prediction approach. The selection process should 

be informed by the specific requirements and limitations inherent in the given application. 

There is a clear imperative for further research to focus on the development of integrated 

approaches that capitalize on the strengths of various methods, aiming to bolster the ac-

curacy and robustness of sediment prediction models. 

7. Conclusion 

The manuscript presents an overview of ML techniques applied to sediment predic-

tion, addressing the complexities inherent in sediment transport within river systems. Tra-

ditional sediment estimation approaches, exemplified by the sediment rating curve (SRC), 

have proven effective in low-data regions with widespread applicability. However, chal-

lenges such as the assumption of stationarity and limitations in capturing non-linearities 

hinder their adaptability, especially in urbanized catchments. The integration of ML tech-

niques, such as Artificial Neural Networks (ANNs), Genetic Expression Programming 

(GEP), Bayesian Networks (BNs), and Adaptive Neuro-Fuzzy Inference System (ANFIS), 

presents a paradigm shift in sediment prediction. These approaches demonstrate remark-

able capabilities in handling non-linear relationships, automatic discovery of mathemati-

cal patterns, model transparency, and effective adaptation to complex environmental var-

iables. 

 The ANNs, particularly the multilayer perceptron, stand out for their prowess in 

non-linear pattern recognition, making them valuable tools in predicting sediment-related 

variables. Similarly, GEP showcases its strengths in automatic discovery of mathematical 

relationships, effective capturing of non-linearities, and model transparency. The BN pre-

sents model transparency through graphical representation, making them suitable for 

multivariate systems and effective in handling incomplete information. The technique is 

not devoid of some cons, related to accurate prior information, limited applicability in 

dynamic systems, and dependencies on the quality of training data need careful consid-

eration. 

Hybridization of neural networks and fuzzy logic, emerges as a powerful tool for 

modeling non-linear relationships. While effective in capturing intricate patterns, it de-

mands careful parameter tuning and is sensitive to the quality of training data. In the 

context of hybrid machine learning models, the integration of Support Vector Machines, 

fuzzy logic, and genetic algorithms has provided promising results, offering accurate 
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sediment estimates. This innovative approach, as seen in the works of [26], [27], and [36], 

signifies the potential for further advancements in sediment prediction research. 

The applicability of machine learning in sediment prediction, demonstrated through 

a range of hydro-meteorological parameters and hybrid models, signifies a promising av-

enue for future research. The ability to effectively model sediment transport over time 

using diverse algorithms has the potential to revolutionize our understanding and pre-

diction capabilities in this critical domain. As we move forward, continued interdiscipli-

nary collaboration and advancements in machine learning techniques will play a pivotal 

role in enhancing the accuracy and reliability of sediment prediction models. 
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