Article

Light Scattering by Homogeneous and Layered Spheroids: Some New Approaches ${ }^{\dagger}$

Vladimir Il'in ${ }^{1,2,3, *}$ (D, Daria Turichina ${ }^{2}$, Victor Farafonov ${ }^{1}{ }^{(\mathbb{D}}$, and Sergej Laznevoi ${ }^{2}$
1 Saint Petersburg University of Aerospace Instrumentation, Bol. Morskaya ul. 67A, St. Petersburg 190000, Russia
2 Main Astronomical Observatory at Pulkovo, Pulkovskoe sh. 65/1, St. Petersburg 196140, Russia
3 Saint Petersburg State University, Universitetskij pr. 28, St. Petersburg 198504, Russia
* ilin55@yandex.ru
\dagger Presented at the 5th International Electronic Conference on Remote Sensing, 7-21 November 2023; Available online: https:/ /ecrs2023.sciforum.net/.

Citation: Il'in, V.; Turichina, D.; Farafonov, V.; Laznevoi, S. Light Scattering by Homogeneous and Layered Spheroids: Some New Approaches. Environ. Sci. Proc. 2023, 1,0. https://doi.org/

Published:

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ $4.0 /$).

Abstract

We present new tools designed for a wider application of the spheroidal model of real particles in light scattering and polarised radiative transfer simulations. We briefly describe the main theoretical novations in our solution to the light scattering problems for single homogeneous spheroids that was obtained by using the field expansions in an optimised non-orthogonal spheroidal basis. Our exact solution for spheroids with non-confocal layer boundaries is a theoretical breakthrough. We note our efforts to transform the naturally arising spheroidal T-matrix into the standard spherical one widely used in applications to ensembles of spheroids as well as our modification of the package CosTuuM used to prepare the optical data on spheroid ensembles with given distributions for polarised radiative transfer simulations. We discuss the applicability range of our tools as well as various ways used by us to reduce the computational time. As the tools can treat scatterers of as large diffraction parameter $x_{\mathrm{a}}=2 \pi a / \lambda$ as above 300 , where a and λ are the major semiaxis and the wavelength, respectively, as an illustration we compare our results with those derived by the Ray Tracing method.

Keywords: light scattering; spheroidal scatterers; radiative transfer

1. Introduction

In various applications of the optical methods, non-spherical scatterers are represented by spheroidal particles [1-4]. Such spheroidal model is useful as it well describes some optical properties of non-spherical scatterers [5,6]. The theoretical grounds of the model were discussed in [7-9].

To apply the model, one often needs an efficient solution to the light scattering problem for spheroids and in the general case its connection to a (polarised) radiative transfer code.

There are many methods to treat non-spherical scatterers. However, the universal methods (like DDA, FDTD, etc. $[10,11]$) are often very computational time consuming (but they are able to consider particles of very complicated shape and structure). The methods based on the field expansions in terms of spherical or spheroidal functions (like SVM, EBCM, etc.) are much more efficient for spheroidal scatterers. However, the use of spherical bases is limited by spheroids of rather low eccentricity, while the use of optimised spheroidal bases suffers from unknown relation of their 'spheroidal' T-matrix to the standard one being very useful in massive simulations.

We present new tools developed to treat light scattering by homogeneous and layered spheroids as well as by their ensembles in a wide range of parameter values and designed to be applied in polarised radiative transfer modelling.

2. Methods

The key-stone of the developed tools is our solution to the light scattering problem for a single homogeneous spheroid obtained by the EBCM or Waterman method with the field expansions in a spheroidal basis (see for details [12]).

We mixed together the basis functions related to the Debye potential (adopted in the Mie theory) and to the z-component of the Hertz vector (utilised to solve the problem for infinitely long cylinders). Such a basis is known to be optimal for spheroids, as it converges faster than the Mie basis and makes the number of the terms in the field expansions required to reach a given accuracy independent of the particle parameters: the aspect ratio, refractive index, etc. [13]. We also used the trigonometric functions of the azimuthal angle in the basis functions, which led to simplifications (because of appearing of the TM and TE modes) accompanied, however, by additional difficulties in the T-matrix transformations [12].

For the first time in light scattering theory, we uses the Meixner \& Schäfke definition of the spheroidal functions. Such an approach has some merits from the computational point of view [14].

Other our main theoretical novations were as follows. The described basis leads to the complicated TE mode solution that slowly converges, which often limits the solution applicability range. By using the original T-matrix transformations (see below), we expressed the solution for the TE mode through that for the TM mode that is always stable and accurate (see for details [15]).

Our finding of new relations between the spheroidal and spherical functions (see $[16,17]$) allowed us to relate the spheroidal T-matrix naturally emerging for our nonorthogonal spheroidal basis to the standard spherical T-matrix [12]. The absence of such relation was the main disadvantage of applications of such spheroidal bases.

After the paper [12], we have suggested another new approach [18]. As is known, for any scatterers with a symmetry plane (including spheroids), a half of matrix elements in the arising linear systems relative to the unknown field expansion coefficients equals zero. So our excluding such elements gave twice reduction of the dimension of the arising linear systems, which provided both a decrease of computational time and an increase of applicability range (see Sect. 4).

To treat multi-layered spheroids with non-confocal (but concentric and coaxial) layer boundaries in the tools, we apply an original approach also grounded on our new relations between spheroidal and spherical functions. The approach was first realised for coremantle spheroids in [19]. It assumes that the field expansions in terms of the spheroidal functions connected to the upper and lower boundaries of a layer can be linked through the expansions in the same spherical basis. So, besides the boundary conditions for different expansions, we get the additional relations between these expansions, which is enough to find all expansion coefficients [20]. Such a solution is computationally nearly as fast as the well-known one for the spheroids with confocal layer boundaries.

To generalise the solutions on ensembles of homogeneous and layered spheroids, we use the popular T-matrix technique. The spheroidal T-matrix undergoes several transformations partly based on the function relations mentioned above and finally becomes the T-matrix related to the special spherical basis useful for particle orientation averaging [21]. To compute further all the optical properties required by polarised radiative transfer simulations, we have properly modified the open-source package CosTuuM preparing such data for the polarised RT code SKIRT [22].

3. Results

The new theoretical approaches noted above have been used by us to create tools for calculations of various optical properties of homogeneous and layered spheroids as well as of their ensembles.

There are two main options of the tools: single spheroids and ensembles of spheroids. In the first case, the problem formulated in spheroidal coordinates is solve and single particle characteristics (cross-sections, scattering matrix, etc.) are calculated. In the second
case, this solution is formulated as the spheroidal T-matrix that is transformed in the standard spherical T-matrix. Further, one can run the modified package CosTuuM to calculate all optical properties of an ensemble of spheroids with given distributions that are required in polarised radiative transfer.

Testing of the tools included both consideration of internal convergence of the results and a comparison, when possible, with other codes.

It is worth noting that our tools make two breakthroughs in the light scattering theory. The first one is related with our ability to exactly solve the light scattering problem for spheroids with a very large diffraction parameter and/or a high aspect ratio (see for details Sect. 4). The authors of work [23] that appeared after our paper [12] solve the same problem by using similar field expansions in terms of spheroidal functions with the same normalised angular functions and the same codes to compute the spheroidal functions. They reached the diffraction parameter $x_{\mathrm{a}}=2 \pi a / \lambda$, where a is the major semiaxis and λ is the wavelength, equal to 500-600 (though for weakly absorbing spheroids of the aspect ratio less than 10). Earlier even for quasi-spherical spheroids (the aspect ratio less than 2), the most efficient method, the IITM [24,25], could not go so far. These large values of x_{a} indicate that now we are able to get the exact solution for spheroids of large eccentricity practically in the geometrical optics region.

Our second breakthrough is made for layered spheroids with non-confocal boundaries. The only known analytical solution of the light scattering problem for such spheroids given in [26] is found inefficient. Our solution is as fast as that for the much more simple case of confocal layer spheroids $[27,28]$ and has generally a similar range of applicability. Note that any use of the field expansions in spherical bases to solve this problem is strongly limited for mathematical reasons [29], while application of the universal methods mentioned in Sect. 1 often needs a large time.

Another important novelty of our work is that for the first time in the light scattering, we applied the codes recently created by van Buren [30] to calculate the spheroidal functions.

4. Discussion

For applications of the developed tools, it is worth to know the parameter value region where they work stable and reliably.

An important role for the applicability range of our tools is played by the subroutines being used to calculate the spheroidal functions. We select those presented in [14,30] (an alternative was just the subroutines developed in [31] which are known to be unstable in some cases). These codes are based on the algorithms initially suggested for the nonabsorbing media. However, after a proper development ${ }^{1}$ they work quite well for the values of the parameter $c=\pi m d / \lambda$ up to $5000+80 i$ (prolates) and $5000+200 i$, where m is the refractive index, d the focal distance, λ the radiation wavelength. A more detailed discussion of applicability of these subroutines can be found in [12].

Besides the spheroidal function calculations, there are several other factors that confine the applicability range of the tools developed by us. The main problem appears to be related to a large condition number of the matrices in the big linear systems arising in the solution. We observe that for both prolate and oblate spheroids the number of terms in the field expansions N (which is also the half-size of the system matrices) is proportional to the diffraction parameter x_{a}, which is typical of the solutions using our non-orthogonal spheroidal basis [13].

Therefore, practically independent of the refractive index $m=n+k i$, the aspect ratio a / b and the diffraction parameter $x_{\mathrm{v}}=2 \pi r_{\mathrm{v}} / \lambda$, where r_{v} is the radius of the sphere whose volume is equal to that of the spheroid, the tools applicability range, inside which, say, the accuracy of the calculated cross-sections is better than 10^{-6}, is described by the condition $x_{\mathrm{a}} \lesssim x_{\mathrm{a}}^{\max }$. Even for the version of the tools presented in [12] (i.e. without excluding zero

[^0]elements of the matrices and the corresponding system reduction), we find $x_{\mathrm{a}}^{\max } \approx 280$ for $a / b=1-50, n=1.01-1.7, k=0-0.1$, and x_{v} up to 250 . A more fresh version has a wider applicability range with $x_{\mathrm{a}}^{\max }>400$.

Such properties of the developed tools make possible a wide comparison of the exact solution for spheroids with known approximations for large diffraction parameters. An illustration is presented in Fig. 1 for the oblate spheroid with $a / b=10, x_{\mathrm{v}}=80$, and $m=1.5+0.01 i$. Even better agreement of our solution with the Ray Tracing one can be observed in [12], where we consider the prolate spheroids with the parameters: $a / b=2$, $m=1.5+0.05 i, x_{\mathrm{v}}=160$, and $a / b=10, m=1.5+0.01 i, x_{\mathrm{v}}=55$.

Figure 1. A comparison of the scattering matrix element P_{11} proportional to the phase function and calculated with the exact method (this work) and Ray Tracing approach [32,33] for an oblate spheroid with $a / b=10, x_{\mathrm{v}}=80\left(x_{\mathrm{a}}=172\right), m=1.5+0.01 i$ and the oblique plane wave incidence $\alpha=60^{\circ}$.

For such large scatterers, an important parameter is the computational time t. We have tested the tool for homogeneous spheroids and found that $t \approx 0.01 N^{2.4} \approx 0.2 x_{\mathrm{a}}^{1.8} \mathrm{~s}$, where the time is given for a PC with Intel Core i7 2.7 GHz processor [12]. So, for the particles with $x_{\mathrm{a}} \approx 300$, the calculations require about 1.5 hour, with the longest task being solution of the problem for a single particle. This part of the tools has been parallelised by using the MPI framework. Our tests and Amdahl's law indicate that the maximum gain of this parallelisation should be of about 7 times. However, when using, say, a standard PC with 8 cores the gain is just about 3, probably because of the insufficient cache size.

The zero element exclusion approach mentioned in Sect. 2 further reduces the computational time by about 2.5 times. Though the algorithmic complexity of our solution is about N^{4} (our use of the extended precision was found to preclude optimisation of matrix multiplication), the twice reduction of the matrix dimension affects different parts of the solution in a different manner. Our last inspection of the tools shows that there are still several yet unrealised ways to speed up the calculations.

For layered spheroids, the applicability range is similar to that for homogeneous particles and only weakly depends on the number of layers. The computational time naturally grows with an increase of the number of the layers, but remains very close to that required to treat similar spheroids with confocal boundaries. Both these findings are encouraging for future applications of the layered spheroid model.

5. Conclusions

We present new tools developed by us to calculate the optical properties of homogeneous and layered spheroids and their ensembles. An accent is made on possible applications to polarised radiative transfer.

We briefly described numerous innovations used in our tools and noted the progress achieved after our last paper [12]. In particular, we report that the treatment of layered spheroids is in full manner included in the tools and mention steps made to improve the tools performance.

Our tools are available upon request.
Author Contributions: Conceptualization, V.I. and V.F.; methodology, V.F.; software, D.T. and S.L.; validation, D.T.; formal analysis, V.F.; investigation, V.F. and D.T.; resources, D.T.; data curation, D.T.; writing—original draft preparation, V.I.; writing—review and editing, V.F. and D.T.; visualization, V.I.; supervision, V.I.; project administration, V.I.; funding acquisition, V.I. and V.F. All authors have read and agreed to the published version of the manuscript.

Funding: The theoretical work of V.F. within this research was funded by the Ministry of Science and Higher Education of the Russian Federation, grant number FSRF-2023-0003. The computer programming work of D.T. and V.I. within this research was funded by the Russian Science Foundation grant number 20-72-10052.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: The codes presented are available upon request.?
Acknowledgments: The authors are greatly thankful to A.L. van Buren for his efficient codes to calculate the spheroidal functions.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
DDA Discrete Dipole Approximation
EBCM Extended Boundary Condition Method
FDTD Finite-Diference Time-Domain method
IITM Invariant Imbedding T-matrix
SVM Separation of Variables Method
TE Transverse Electric
TM Transverse Magnetic
RT Radiative Transfer

References

1. Dubovik, O.; Sinyuk, A.; Lapyono, T.; Holben, B.N.; Mishchenko, M.I.; et al. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. Atmos. 2006, 111, D11208.
2. Merikallio, S; Lindqvist, H.; Nousiainen, T.; Kahnert, M. Modelling light scattering by mineral dust using spheroids: assessment of applicability. Atmos. Chem. Phys. 2011, 11, 5347-5363.
3. Mukherjee, L.; Zhai, P.-W.; Hu, Y.; Winker, D.M. Single scattering properties of non-spherical hydrosols modeled by spheroids. Opt. Expr. 2018, 26, A124-A135.
4. Tzabari, M.; Lin. W.; Lerner, A.; Iluz, D.; Haspel, C. Sensitivity study on the contribution of scattering by randomly oriented nonspherical hydrosols to linear polarization in clear to semi-turbid shallow waters. Appl. Opt. 2019, 58, 7258-7279.
5. Nousiainen, T.; Kahnert, M.; Lindqvist, H. Can particle shape information be retrieved from light-scattering observations using spheroidal model particles? J. Quant. Spectrosc. Rad. Transf. 2011, 112, 2213-2225.
6. Min, M.; Hovenier, J.W.; de Koter, A. Shape effects in scattering and absorption by randomly oriented particles small compared to the wavelength. Astron. Astrophys. 2003, 404, 35-46.
7. Sihvola, A. Modeling and characterization of the interaction of electromagnetic wave with nanocomposites and nanostructured materials. J. Nanomater. 2007, 2007, 45090. doi:doi:10.1155/2007/45090.
8. Farafonov, V.G.; Il'in, V.B.; Prokopjeva, M.S.; Tulegenov, A.R.; Ustimov, V.I. A spheroidal model of light scattering by nonspherical particles. Opt. Spectrosc. 2019, 126, 360-366.
9. Farafonov, V.G.; Il'in, V.B.; Ustimov, V.I. Ellipsoidal models of small non-spherical scatterers. Quant. Opt. Electr. 2020, 52, 23.
10. Mishchenko, M.I.; Wiscombe, W.J.; Hovenier, J.W.; Travis, L.D. Overview of scattering by nonspherical particles. In Light scattering by nonspherical particles; Mishchenko, M.I., Hovenier, J.W., Travis, L.D., Eds.; Academic Press: San Diego, 2000; pp. 29-60.
11. Sun, B.; Kattawar, G.W.; Yang P.; Zhang, X. A brief review of Mueller matrix calculations associated with oceanic particles. Appl. Sci. 2018, 8, 2686.
12. Il'in, V.B.; Turichina, D.G.; Farafonov, V.G.; Laznevoi, S.I.; et al. A new practical approach to light scattering by spheroids with the use of spheroidal and spherical function bases. J. Quant. Spectrosc. Rad. Transf. 2023, 311, 108759.
13. Voshchinnikov, N.V.; Farafonov, V.G. Optical properties of spheroidal particles. Astrophys. Spa. Sci. 1993, 204, 19-86.
14. van Buren, A.L. Calculation of oblate spheroidal wave functions with complex argument. arXiv preprints 2020, math/2009.01618.
15. Farafonov, V.G.; Il'in, V.B.; Turichina, D.G. On solution of the light scattering problem for a spheroid in the TM and TE modes when using spheroidal bases. Opt. Spectrosc. 2023, 131, 34-40.
16. Farafonov, V.G.; Voshchinnikov, N.V.; Semenova, E.G. Some relations between the spheroidal and spherical wave functions. J. Math. Sci. 2016, 214, 382-391.
17. Farafonov, V.G.; Il'in, V.B.; Turichina, D.G. Light scattering by a spheroid. Relations between spheroidal and spherical T-matrices. In Days on Diffraction 2021; Motygin, O.V., Kiselev, A.P., Goray, L.I., Zaboronkova, T.M., Eds.; IEEE: Danvers, 2021; pp. 48-53.
18. Farafonov, V.G.; Turichina, D.G.; Il'in, V.B. A new approach to solving the light scattering problem for particles with the plane symmetry by using the field expansion in wave functions. Opt. Spectrosc. 2023, 131, N 11, in press.
19. Turichina, D.G.; Farafonov, V.G.; Il'in, V.B. Exact solution to the light scattering problem for a core-mantle spheroid with non-confocal layer boundaries. In Days on Diffraction 2022; Motygin, O.V., Kiselev, A.P., Goray, L.I., Zaboronkova, T.M., Eds.; IEEE: Danvers, 2022; pp. 130-135.
20. Farafonov, V.G.; Il'in, V.B.; Turichina, D.G. Light scattering calculations for multilayered spheroids using spheroidal bases. In Days on Diffraction 2023; Motygin, O.V., Kiselev, A.P., Goray, L.I., Zaboronkova, T.M., Eds.; IEEE: Danvers, 2023; pp. 53-58.
21. Mishchenko, M.I.; Travis, L.D.; Lacis, A.A. Scattering, absorption, and emission of light by small particles; Cambridge Univ. Press: Cambridge, 2002.
22. Vandenbroucke, B.; Baes, M.; Camps, P. CosTuuM: polarized thermal dust emission by magnetically oriented spheroidal grains. Astron. J. 2020, 160, 55.
23. Ding, J.; Yang, P. Lorenz-Mie theory-type solution for light scattering by spheroids with small-to-large size parameters and aspect ratios. Opt. Expr. 2023, 31, 40937-40951.
24. Johnson, B.R. Invariant imbedding T matrix approach to electromagnetic scattering. Appl. Opt. 1988, 27, 4861-4873.
25. Bi, L.; Yang, P.; Kattawar, G.W.; Mishchenko, M.I. Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles. J. Quant. Spectrosc. Radiat. Transf. 2013, 116, 169-183.
26. Han, Y.P.; Zhang, H.Y.; Sun, X., 2006, Scattering of shaped beam by an arbitrarily oriented spheroid having layers with non-confocal boundaries. Appl. Phys. B 2006, 84, 485-492.
27. Onaka, T. Light scattering by spheroidal grains. Annals of Tokyo Astronomical Observatory 1980, 18, 1-54.
28. Farafonov, V.G.; Voshchinnikov, N.V. Light scattering by a multilayered spheroidal particle. Appl. Opt. 2012, 51, 1586-1597.
29. Farafonov, V.G.; Il'in, V.B.; Ustimov, V.I.; Volkov, E.V. Analysis of Waterman's method in the case of layered scatterers. Adv. Math. Phys. 2017, 2017, 7862462.
30. Van Buren, A.L. Mathieu and spheroidal wave functions. Available online: http://www.mathieu andspheroidalwavefunctions.com (accessed on 10 December 2023).
31. Voshchinnikov, N.V.; Farafonov, V.G. Calculation of prolate radial spheroidal wave functions using the Jaffée expansion. Comput. Math. Math. Phys. 2003, 43, 1299-1309.
32. Ren, F.; Onofri, F.; Rozé, C.; Girasole, T. Vectorial complex ray model and application to twodimensional scattering of plane wave by a spheroidal particle. Opt Lett 2011, 35, 370-72.
33. Ren, F., et al. VCRMEll2D code page at the AMO-COPSs site. Available online: https:/ /amocops. univ-rouen.fr/en/content/download; 2023 (accessed on 10 December 2023).

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

[^0]: 1 We are glad that our testing allowed van Buren to fix a mistake in the codes.

