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ABSTRACT 

Novel atom-based molecular descriptors based on a bilinear map similar to use defined in linear algebra are 
presented. These molecular descriptors, called “local (atom, group and atom-type) and total (global) bilinear indices”, 
are proposed here as a new molecular parametrization easily calculated from the 2D molecular information. The 
proposed non-stochastic and stochastic molecular fingerprints try to match molecular structure provided by the 
molecular topology by using the kth non-stochatic (Marrero-Ponce, Y. J. Chem. Inf. Comput. Sci. 2004, 44, 2010 and 
Marrero-Ponce, Y. Molecules 2003, 8, 687) and stochastic (Marrero-Ponce, Y., et al. J. Mol. Struc. (Theochem) 2005, 
717, 67 and Marrero-Ponce, Y.; Castillo-Garit, J. A. J. Comput.-Aided Mol. Des. DOI: DO00017575) graph–theoretic 
electronic-density matrices, Mk and Sk, respectively. That is to say, the kth non-stochastic and stochastic bilinear 
indices are calculated using Mk and Sk as matrix operators of bilinear transformations. Moreover, chemical 
information is codified by using different pair combinations of atomic weightings (atomic mass, polarizability, van der 
Waals volume, and electronegativity). The prediction ability in Quantitative Structure-Property Relationships (QSPR) 
of the new molecular descriptors was tested by analysing regressions of these descriptors for six selected properties 
of octane isomers. It was clearly demonstrated that prediction ability was higher than those showed by other 2D/3D 
well-known sets of molecular descriptors. The obtained results suggest that with the present method it is possible to 
obtain a good estimation of these physicochemical properties for octanes. The approach described in the present 
report appears to be a prominent method to find quantitative models for description of physicochemical and biological 
properties.  
Keywords: TOMOCOMD-CARDD Software, Non-Stochastic and Stochastic Atom-Based Bilinear Indices, QSPR 
Model, Physicochemical Properties, Octane Isomers. 
 

1. INTRODUCTION 

Molecular descriptors (MDs) have deserved more and more 

attention from chemists along the later years.1 In this connection, a 

large number of QSAR/QSPR studies have been reported in recent 

literature that use MDs in prediction of the physicochemical and 



biological properties of molecules. MDs are numbers that characterize 

a specific aspect of molecular structure. The important common 

feature to all those MDs is the independence of their numerical values 

on renumbering atoms in a chemical structure.3,4 

At present, there are a great number of MDs that can be used in 

QSAR/QSPR and drug-design studies.3-5 Among them, the so-colled 

topological indices (TIs) are among most useful MDs known 

nowadays.6-8 TIs are MDs derived from graph-theoretical invariants 

and codify structural information contained in ‘molecular 

connectivity’.6-9 

The introduction of new TIs has focused the efforts of the 

scientists working on molecular topology.10-12 In fact, our research 

group has proposed several atom- and bond-based topological and 

topographic MDs. In this sense, Estrada’s group has defined several 

bond-based MDs using the Randić-type graph-theoretical invariant, 

spectral moment (trace sum)-theoretical invariant and so on.12-19 On 

the other hand, González and co-workers have developed a new 

method based on the Markov chain theory, which has been 

successfully employed in QSPR and QSAR studies.20–23 More recently, 

one of the present authors (M-P. Y) has introduced new sets of total 

and atom-level MDs relevant to QSAR/QSPR studies and ‘rational’ 

drug design, atom-based quadratic qk(x) and linear indices fk(x).24-27 

These MDs are based on the calculation of quadratic and linear maps 

similar to those defined in linear algebra.28 Our research team has 

focused its efforts mainly on their application in drug design, so that 

many new drug(lead)-like compounds within different 

pharmacological skills have been found out.29-35 This approach has 

been successfully applied to the prediction of several physicochemical 

and pharmacokinetical properties of organic compounds.25,36-40 In 

addition, these MDs have been extended to consider three-

dimensional features of small/medium-sized molecules based on the 



trigonometric-3D-chirality-correction factor approach.27,41 Finally, 

promising results have been found in the modeling of the interaction 

between drugs and HIV Ψ-RNA packaging-region in the field of 

bioinformatics using macromolecular indices.42,43 An alternative 

formulation of our approach for structural characterization of proteins 

was also carried out recently.44,45  

The main purpose of the present paper is to present new sets of 

MDs, namely non-stochastic and stochastic bilinear indices and 

establish their abilities (both total and local) for the description of the 

molecular structure by correlating them with six selected 

physicochemical properties of octane isomers.  

 

2. METHODOLOGY 

In previous reports, we outline outstanding features concerned with the theory of 2D 

atom-based TOMOCOMD-CARDD descriptors. This method codifies the molecular 

structure by means of mathematical quadratic, linear and bilinear transformations. In 

order to calculate these algebraic maps for a molecule, the atom-based molecular vector, 

x (vector representation) and kth “non-stochastic and stochastic graph–theoretic 

electronic-density matrices”, Mk and Sk correspondingly (matrix representations), are 

constructed.24-41 Such atom-adjacency relationships and chemical-information 

codification will be applied in the present report to generate a series of atom-based 

MDs, atom, group and atom-type as well as total bilinear indices, to be used in drug 

design and chemoinformatic studies.  

Therefore the structure of this section will be as follows: 1) a background in atom-

based molecular vector and non-stochastic and stochastic graph–theoretic electronic-

density matrices will be described in the next subsections (2.1 and 2.2, respectively), 

and 2) an outline of the mathematical definition of bilinear maps and a definition of our 

procedures will be develop in subsections 2.3 and 2.4, correspondingly.   

2.1. Chemical Information and Atom-based Molecular Vector 

The atom-based molecular vector ( x ) used to represent small-to-medium size 

organic chemicals have been explained elsewhere in some detail.24-41 The components 

(x) of x are numeric values, which represent a certain standard atomic property (atom 

label). That is to say, these weights correspond to different atom properties for organic 



molecules. Thus, a molecule having 5, 10, 15,..., n atomic nuclei can be represented by 

means of vectors, with 5, 10, 15,..., n components, belonging to the spaces  ℜ 5, ℜ 10, 

ℜ 15,...,ℜ n, respectively; where n is the dimension of the real set (ℜ n). That is to say, 

x  is the n-dimensional property vector of the atoms (atomic nuclei) in a molecule.  

This approach allows us to encode organic molecules such as 3-mercapto-pyridine-

4-carbaldehyde through the molecular vector x  = [xN1, xC2, xC3, xC4, xC5, xC6, xC7, xO8, 

xS9] (see also Table 1 for molecular structure). This vector belongs to the product space 

ℜ 9. However, diverse kinds of atomic weights (x) can be used for codifying 

information related to each atomic nucleus in the molecule. These atomic labels are 

chemically meaningful numbers such as atomic Log P,46 surface contributions of polar 

atoms,47 atomic molar refractivity,48 atomic hybrid polarizabilities,49 Gasteiger-Marsilli 

atomic charge,50 atomic masses (M),51 the van der Waals volumes (V),51 the atomic 

polarizabilities (P),51 atomic electronegativity (E) in Pauling scale52 and so on.  

Table 1 (click here) 

Now, if we are interested to codify the chemical information by means of two 

different molecular vectors, for instance, x  = [x1,…,xn] and y  = [y1,…,yn]; then 

different combinations of molecular vectors ( x ≠ y ) are possible when a weighting 

scheme is used. In the present report, we characterized each atomic nucleus with the 

following parameters: atomic masses (M),51 the van der Waals volumes (V),51 the 

atomic polarizabilities (P),51 and atomic electronegativity (E) in Pauling scale.52 The 

values of these atomic labels are shown in Table 2. From this weighting scheme, six (or 

twelve if x M- y V ≠ x V- y M) combinations (pairs) of molecular vectors ( x , y ; x ≠ y ) 

can be computed, x M- y V, x M- y P, x M- y E, x V- y P, x V- y E, and x P- y E. Here, we 

used the symbols x W- y Z, where the subscripts W and Z mean two atomic properties 

from our weighting scheme and a hyphen (-) expresses the combination (pair) of two 

selected atom-label chemical properties. In order to illustrate this, let us consider the 

same organic molecule as in the example above (3-mercapto-pyridine-4-carbaldehyde) 

and the following weighting scheme: M and V ( x M- y V = x V- y M). The following 

molecular vectors, x  = [14.01, 12.01, 12.01, 12.01, 12.01, 12.01, 12.01, 16.0, 32.07] 

and y  = [15.599, 22.449, 22.449, 22.449, 22.449, 22.449, 22.449, 11.494, 24.429] are 

obtained when we use M and V as chemical weights for codifying each atom in the 

example molecule in x  and y  vectors, respectively.  

tables.pdf


Table 2 (click here) 

2.2. Background in Non-Stochastic and Stochastic Graph–Theoretic Electronic-

Density Matrices  

In molecular topology, molecular structure is expressed, generally, 

by the hydrogen-suppressed graph. That is, a molecule is 

represented by a graph. Informally a graph G is a collection of 

vertices (points) and edges (lines or bonds) connecting these 

vertices.53-55 In more formal terms, a simple graph G is defined as an 

ordered pair [V(G), E(G)] which consists of a nonempty set of 

vertices V(G) and a set E(G) of unordered pairs of elements of V(G), 

called edges.53-55  In this particular case we are not dealing with a 

simple graph but with a so-called pseudograph (G). Informally, a 

pseudograph is a graph with multiple edges or loops between the 

same vertices or the same vertex. Formally: a pseudograph is a set V 

of vertices along a set E of edges, and a function f from E to {{u,v}| 

u,v in V} (The function f shows which pair of vertices are connected 

by which edge). An edge is a loop if f(e) = {u} for some vertex u in 

V.24,25,56 

In the earlier reports we have introduced new molecular matrices that describe 

changes along the time in the electronic distribution throughout the molecular 

backbone. The nxn kth non-stochastic graph–theoretic electronic-density matrix of the 

molecular pseudograph (G), Mk, is a square and symmetric matrix, where n is the 

number of atoms (atomic nuclei) in the molecule.24-41 The coefficients kmij are the 

elements of the kth power of M(G) and are defined as follows: 24-41 

mij  = Pij if i ≠ j and ∃ ek ∈ E(G)                                                                                                                                   
(1)                                                                                                                                            

= Lii if i = j 

= 0 otherwise 

where E(G) represents the set of edges of G. Pij is the number of edges (bonds) between 

vertices (atomic nuclei) vi  and  vj, and Lii is the number of loops in vi.  

The elements mij = Pij of such a matrix represent the number of chemical bonds 

between an atomic nucleus i and other j. The matrix Mk provides the numbers of walks 

of length k that link every pair of vertices vi and vj. For this reason, each edge in M1 
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represents 2 electrons belonging to the covalent bond between atomic nuclei i and j; e.g. 

the inputs of M1 are equal to 1, 2 or 3 when single, double or triple bonds, 

correspondingly, appears between vertices vi and vj. On the other hand, molecules 

containing aromatic rings with more than one canonical structure are represented by a 

pseudograph. It happens for substituted aromatic compounds such as pyridine, 

naphthalene, quinoline, and so on, where the presence of pi (π) electrons is accounted 

by means of loops in each atomic nucleus of the aromatic ring. Conversely, aromatic 

rings having only one canonical structure, such as furan, thiophene and pyrrol are 

represented by a multigraph. In order to illustrate the calculation of these matrices, let us 

consider the same molecule selected in the previous section. Table 1 depicts the 

molecular structure of this compound and its labeled molecular pseudograph. The zero 

(k = 0), first (k = 1), second (k = 2) and third (k = 3) powers of the non-stochastic graph–

theoretic electronic-density matrices are also given in this Table. 

As can be seen, Mk are graph–theoretic electronic–structure models, like an 

“extended Hückel theory (EHT) model”. The M1 matrix considers all valence-bond 

electrons (σ - and π -networks) in one step and its power (k = 0, 1, 2, 3…) can be 

considered as interacting–electron chemical–network models in k step. The complete 

model can be seen as an intermediate between the quantitative quantum-mechanical 

Schrödinger equation and classical chemical bonding ideas.57  

The present approach is based on a simple model for the 

intramolecular movement of all outer-shell electrons. Let us consider 

a hypothetical situation in which a set of atoms is free in space at an 

arbitrary initial time (t0). At this time, the electrons are distributed 

around the atomic nuclei. Alternatively, these electrons can be 

distributed around cores in discrete intervals of time tk. In this sense, 

the electron in an arbitrary atom i can move (step-by-step) to other 

atoms at different discrete time periods tk (k = 0, 1, 2, 3,…) 

throughout the chemical-bonding network. 

On the other hand, the kth stochastic graph–theoretic electronic-density matrix of G, 

Sk, can be directly obtained from Mk. Here, Sk = [ksij], is a square matrix of order n (n = 

number of atomic nuclei) and the elements ksij are defined as follows:30,31,34,35 
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where, kmij are the elements of the kth power of M and the SUM of the ith row of Mk are 

named the k-order vertex degree of atom i, i
kδ . It should be remarked that the matrix Sk 

in Eq. 2 has the property that the sum of the elements in each row is 1. An nxn matrix 

with nonnegative entries having this property is called a “stochastic matrix”.28 The kth  sij 

elements are the transition probabilities with the electrons moving from atom i to j in 

the discrete time periods tk. It should be also pointed out that kth element sij takes into 

consideration the molecular topology in k step throughout the chemical-bonding (σ - 

and π -) network. In this sense, the 2sij values can distinguish between hybrid states of 

atoms in bonds. For instance, the self-return probability of second order (2sii) [i.e., the 

probability with which electron returns to the original atom at t2], varies regularly 

according to the different hybrid states of atom i in the molecule, e.g. an electron will 

have a higher probability of returning to the sp C atom than to the sp2
 (or sp3) C atom in 

t2 [p(Csp)>p(Csp
2)>p(Csp

2
arom)>p(Csp

3)] (see Table 1 for more details). This is a logical 

result if the electronegativity scale of these hybrid states is taken into account. 

2.3. Mathematical Bilinear Forms: A Theoretical Framework 

In mathematics, a bilinear form in a real vector space is a 

mapping ℜ→VxVb : , which is linear in both arguments.58-63 That is, 

this function satisfies the following axioms for any scalar α and any 

choice of vectors 121 ,,,, wvvwv  and 2w .  

i. ),(),(),( wvbwvbwvb ααα ==  

ii. ),(),(),( 2121 wvbwvbwvvb +=+       

iii. ),(),(),( 2121 wvbwvbwwvb +=+       

That is, b is bilinear if it is linear in each parameter, taken separately. 

Let V be a real vector space in nℜ ( nV ℜ∈ ) and consider that the following vector set, 

{ }neee ,...,, 21  is a basis set of nℜ . This basis set permits us to write in unambiguous 

form any vectors x and y of V, where nnxxx ℜ∈),...,,( 21 and nnyyy ℜ∈),...,,( 21 are 

the coordinates of the vectors x and y , respectively. That is to say,  
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if we take the aij as the nxn scalars ),( ji eeb , That is,  

),( jiij eeba = , to i = 1,2,…,n and j = 1,2,…,n                                                                (6) 

Then, 

[ ] [ ] [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=== ∑

n
nnn

jn
n

n

ji

Tji
ij

y

y

aa

aa
xxYAXyxayxb M

1

1

11
1

, ...
.........

...
...),(                               (7) 

As it can be seen, the defined equation for b may be written as the single matrix 

equation (see Eq. 7), where [Y] is a column vector (an nx1 matrix) of the coordinates of 

y  in a basis set of ℜ n, and [X]T (a 1xn matrix) is the transpose of [X], where [X] is a 

column vector (an nx1 matrix) of the coordinates of x in the same basis of ℜ n. 

Finally, we introduce the formal definition of symmetric bilinear form. Let V be a 

real vector space and b be a bilinear function in VxV. The bilinear function b is called 

symmetric if Vyxxybyxb ∈∀= ,),,(),( .58-63 Then, 

),(),(
,,

xybyxayxayxb
n
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ji

n

ji

ji
ij === ∑∑                                            

(8) 

2.4. Non-Stochatic and Stochastic Atom-Based Bilinear Indices: Total (Global) 

Definition 

The kth non-stochastic and stochastic bilinear indices for a molecule, ),( yxbk and 

),( yxbk
s , are computed from these kth non-stochastic and stochastic graph–theoretic 

electronic-density matrices, Mk and Sk as shown in Eqs. 9 and 10, respectively:  
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(10)     

where n is the number of atoms in the molecule, and x1,…,xn and y1,…,yn are the 

coordinates or components of the molecular vectors x  and y  in a canonical basis set of 

ℜ n. 

The defined equations (9) and (10) for ),( yxbk and ),( yxbk
s  may be also written as 

the single matrix equations: 

=),( yxb [X]T Mk [Y]                                                                                                      

(11) 

=),( yxbs [X]T Sk [Y]                                                                                                      (12) 

Where [Y] is a column vector (an nx1 matrix) of the coordinates of y in the canonical 

basis set of ℜ n, and [X]T is the transpose of [X], where [X] is a column vector (an nx1 

matrix) of the coordinates of x in the canonical basis of ℜ n. Therefore, if we use the 

canonical basis set, the coordinates [(x1,…,xn) and (y1,…,yn)] of any molecular vectors 

( x  and y ) coincide with the components of those vectors [(x1,…,xn) and (y1,…,yn)]. For 

that reason, those coordinates can be considered as weights (atomic labels) of the 

vertices of the molecular pseudograph, due to the fact that components of the molecular 

vectors are values of some atomic property that characterizes each kind of atomic nuclei 

in molecule. 

It should be remarked that non-stochastic and stochastic bilinear indices are 

symmetric and non-symmetric bilinear forms, respectively. Therefore, if in the 

following weighting scheme, M and V are used as atomic weights to compute theses 

MDs, two different sets of stochastic bilinear indices, M-V sbk
H(x ,y) and V-M sbk

H(x ,y) 

[because x M- y V ≠ x V- y M] can be obtained and only one group of non-stochastic 

bilinear indices (M-V sbk
H(x ,y) = V-M sbk

H(x ,y) because in this case x M- y V = x V- y M) 

can be calculated.  

2.5. Non-Stochastic and Stochastic Atom-Based Bilinear Indices: Local (Atomic, 

Group, and Atom-type) Definition. 

In the last decade, Randić64 proposed a list of desirable attributes 

for a MD. Therefore, this list can be considered as a methodological 

guide for the development of new TIs. One of the most important 



criteria is the possibility of defining the descriptors locally. This 

attribute refers to the fact that the index could be calculated for the 

molecule as a whole but also over certain fragments of the structure 

itself. 

Sometimes, the properties of a group of molecules are related 

more to a certain zone or fragment than to the molecule as a whole. 

Thereinafter, the global definition never satisfies the structural 

requirements needed to obtain a good correlation in QSAR and QSPR 

studies. The local indices can be used in certain problems such as: 

• Research on drugs, toxics or generally any organic molecules with 

a common skeleton, which is responsible for the activity or property 

under study. 

• Study on the reactivity of specific sites of a series of molecules, 

which can undergo a chemical reaction or enzymatic metabolism. 

• In the study of molecular properties such as spectroscopic 

measurements, which are obtained experimentally in a local way. 

• In any general case where it is necessary to study not the 

molecule as a whole, but rather some local properties of certain 

fragments, then the definition of local descriptors could be 

necessary.  

Therefore, in addition to total bilinear indices computed for the whole molecule, a 

local-fragment (atomic, group or atom-type) formalism can be developed. These 

descriptors are termed local non-stochastic and stochastic bilinear indices, 

),( yxb Lk and ),( yxb Lk
s , respectively. The definition of these descriptors is as follows: 
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Where kmijL [ksijL] is the kth element of the row “i” and column “j” of the local matrix 

Mk
L [Sk

L]. This matrix is extracted from the Mk [Sk] matrix and contains information 



referred to the pairs of vertices (atomic nuclei) of the specific molecular fragments and 

also of the molecular environment in k step. The matrix Mk
L [Sk

L] with elements kmijL 

[ksijL] is defined as follows:  
kmijL [ksijL]  = kmij [ksijL] if both vi and vj are atomic nuclei contained within the molecular  

                      fragment  

                 = 1/2
 kmij  [ksijL] if vi or vj is an atomic nucleus contained within the molecular  

                    fragment but not both  

                  = 0 otherwise                                                                                                 

(15)                                                                                                                   

These local analogues can also be expressed in matrix form by the expressions: 

=),( yxbL [X]T Mk 
L[Y]                                                                                                  (16) 

=),( yxbL
s [X]T Sk

L
 [Y]                                                                                                  (17) 

It should be remarked that the scheme above follows the spirit of a Mulliken 

population analysis.65 It should be also pointed out that for every partitioning of a 

molecule into Z molecular fragments there will be Z local molecular fragment matrices. 

In this case, if a molecule is partitioned into Z molecular fragments, the matrix Mk [Sk] 

can be correspondingly partitioned into Z local matrices Mk
L [Sk

L], L = 1,... Z, and the 

kth power of matrix M [S] is exactly the sum of the kth power of the local Z matrices. In 

this way, the total non-stochastic and stochastic bilinear indices are the sum of the non-

stochastic and stochastic bilinear indices, respectively, of the Z molecular fragments: 
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Atomic, group and atom-type bilinear fingerprints are specific cases of local bilinear 

indices. Atomic bilinear indices,  ),( iiLk yxb and ),( iiLk
s yxb , can be computed for each 

atom i in the molecule and contain electronic and topological structural information 

from all other atoms within the structure. The atom-level bilinear indices values for the 

common scaffold atoms can be directly used as variables in seeking a QSPR/QSAR 

model as long as these atoms are numbered in the same way in all molecules in the 

database.   

In addition, the atom-type bilinear indices can also be calculated. In the same way as 

atom-type E-state values,11 for all data sets (including those with a common skeletal 



core as well as those with very diverse structures), these novel local MDs provide much 

useful information. That is, this approach provides the basis for application to a wider 

range of problems to which the atomic bilinear indices formalism is applicable without 

the need for superposition.,66,67 For this reason the present method represents a 

significant advantage over traditional QSAR methods. The atom-type bilinear 

descriptors are calculated by adding the kth atomic bilinear indices for all atoms of the 

same type in the molecule. This atom type index lends itself to use in a group additive-

type scheme in which an index appears for each atom type in the molecule. In the atom-

type bilinear indices formalism, each atom in the molecule is classified into an atom 

type (fragment), such as –F, -OH, =O, -CH3, and so on.11,66,67 That is to say, each atom 

in the molecule is categorized according to a valence-state classification scheme 

including the number of attached H-atoms.11 The atom-type descriptors combine three 

important aspects of structural information: 1) Collective electron and topologic 

accessibility to the atoms of the same type (for each structural feature: atom or hybrid 

group such as –Cl, =O, -CH2-, etc), 2) presence/absence of the atom type (structural 

features), and 3) count of the atoms in the atom-type sets.  

Finally, these local MDs can be calculated by a chemical (or functional) group in the 

molecule, such as heteroatoms (O, N and S in all valence states and including the 

number of attached H-atoms), hydrogen bonding (H-bonding) to heteroatoms (O, N and 

S in all valence states), halogen atoms (F, Cl, Br and I), all aliphatic carbon chains 

(several atom types), all aromatic atoms (aromatic rings), and so on. The group-level 

bilinear indices are the sum of the individual atom-level bilinear indices for a particular 

group of atoms. For all data set structures, the kth group-based bilinear indices provide 

important information for QSAR/QSPR studies.  

2.6. Sample Calculation 

It is useful to perform a calculation on a molecule to illustrate the effect of structure 

on atomic and global bilinear indices values. For this we use the 3-mercapto-pyridine-4-

carbaldehyde molecule. The labeled (atom numbering) molecular structure of this 

chemical and the non-stochastic and stochastic (atom-level, group and atom-type as well 

as total) atom-based bilinear indices are shown at the Table 3. 

Table 3 (click here) 

 

3. COMPUTATIONAL STRATEGIES 
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All computations were carried out on a PC Pentium-4 2.0 GHz. The 

TOMOCOMD program for Windows package developed in our 

laboratory was used for computing the molecular descriptors for the 

dataset of compounds. This software is an interactive program for 

molecular design and bioinformatic research.68 It is composed of four 

subprograms; each one of them allows both drawing the structures 

(drawing mode) and calculating molecular 2D/3D descriptors 

(calculation mode). The modules are named CARDD (Computed-

Aided ‘Rational’ Drug Design), CAMPS (Computed-Aided Modeling in 

Protein Science), CANAR (Computed-Aided Nucleic Acid Research) 

and CABPD (Computed-Aided Bio-Polymers Docking). In the present 

report, we outline salient features concerned with only one of these 

subprograms, CARDD and with the calculation of non-stochastic and 

stochastic 2D atom-based bilinear indices. 

The main steps for the application of the present method in QSAR/QSPR and drug 

design can be summarized briefly in the following algorithm: 1) Draw the molecular 

structure for each molecule in the data set, using the software drawing mode. This 

procedure is performed by a selection of the active atomic symbol belonging to the 

different groups in the periodic table of the elements; 2) Use appropriate weights in 

order to differentiate the atoms in the molecule. The weights used in this work are those 

previously proposed for the calculation of the DRAGON descriptors,51,69,70 i.e., atomic 

mass (M), atomic polarizability (P), van der Waals atomic volume (V), plus the atomic 

electronegativity in Pauling scale (E). The values of these atomic labels are shown in 

Table 2;51,52,69,70 3) compute the total and local (atomic, group and atom-type) non-

stochastic and stochastic bilinear indices. It can be carried out in the software 

calculation mode, where one can select the atomic properties and the descriptor family 

before calculating the molecular indices. This software generates a table in which the 

rows correspond to the compounds, and columns correspond to the atom-based (both 

total and local) bilinear maps or other MDs family implemented in this program; 4) 

Find a QSPR/QSAR equation by using several multivariate analytical techniques, such 

as multilinear regression analysis (MRA), neural networks, linear discrimination 

analysis, and so on. That is to say, we can find a quantitative relation between a 

property P and the bilinear fingerprints having, for instance, the following appearance,  



P = a0b0(x,y)  + a1b1(x,y) + a2b2(x,y) +….+ akbk(x,y) + c                                              (20)                             

where P is the measured property, bk(x,y) are the kth non-stochastic total bilinear indices, 

and the ak’s are the coefficients obtained by the MRA; 5) test the robustness and 

predictive power of the QSPR/QSAR equation by using internal cross-validation 

techniques.  

The atom–based TOMOCOMD-CARDD MDs computed in this study were the 

following: 

i) kth (k = 15) total (global) non-stochastic bilinear indices not considering and 

considering H-atoms in the molecule [bk(x,y) and bk
H(x,y), respectively].  

ii) kth (k = 15) total (global) stochastic bilinear indices considering H-atoms in the 

molecule [sbk
H(x,y)]. 

iii) kth (k = 15) group (methyl group, -CH3) non-stochastic and stochastic bilinear 

indices considering H-atoms in the molecule. [bkL(CH3)
H(x,y) and sbkL(CH3)

H(x,y), 

respectively]. These local descriptors are calculated taken into account only one of the 

three bond types for carbon-hydrogen bonds (Cprimary-H) that there are for octanes 

data. 

 

4. DATA SETS 

The data sets for this study were taken from Consonni et at.,69 because the data of 

physicochemical properties of octane isomers have been carefully selected for testing 

MDs. Octanes constituted a good set of chemicals for comparative study, since many 

experimental data among their physicochemical properties and QSPR studies are 

available.69,71-76  In this sense, we analyzed the quality of the obtained QSPR models to 

describe the boiling point (BP), motor octane number (MON), heat of vaporization 

(HV), molar volume (MV), entropy (S), and heat of formation (∆fH) of the octane 

isomers.  

The use of octanes as a very suitable data set for testing TIs have been advocated by 

Randić and Trinajstić.77,78 This selection is recommended due to the most of the fact 

that physicochemical properties commonly studied in QSPR analyses with TIs are 

interrelated for data sets of compounds with different molecular weights, for instance 

for alkanes with two to nine carbon atoms. These correlations are not necessarily 

observed when the same indices are used in isomeric data sets of compounds, such as 

the octane data set. In addition, these properties are hardly interrelated when octanes are 

used as a data set.74 On the other hand; all the TIs are designed to have (gradual) 



increments with the increase in the molecular weight. By this way, if we do the present 

study by using a series of compounds having different molecular weights, we will find 

“false” interrelations between the indices by an overestimation of the size effects 

inherent to these descriptors.71 The same is also valid when the QSPR model is to be 

obtained. It is not difficult to find “good” linear correlations between TIs and 

physicochemical properties of alkanes in data sets with great size variability.71 In fact, 

the simple use of the number of vertices in the molecular graph produced regression 

coefficients greater than 0.97 for most of the physicochemical properties of C2-C9 

alkanes studied by Needham et al.79 However, when data sets of isomeric compounds 

are considered, correlations that typically have high correlation coefficients when 

molecules of different sizes are considered will no longer show such good linear 

correlation. In conclusion, if a new proposed MD is not able to model the variation of at 

least one property of octane isomers, then it probably does not contain any useful 

molecular information.  

 

5. STATISTICAL METHOD 

The kth total and local atom-based bilinear indices were used as molecular 

descriptors for derived QSPRs. One of the difficulties with the large number of 

descriptors is deciding which ones will provide the best regressions. Furthermore, as 

testing a large number of all possible combinations of variables would be a tedious task 

and time-consuming procedure, we have used a genetic algorithm (GA) input 

selection.80-85  

GAs are a class of algorithms inspired by the process of natural evolution in which 

species having a high fitness under some conditions can prevail and survive to the next 

generation; the best species can be adapted by crossover and/or mutation in the search 

for better individuals. Genetic function approximation (GFA), a combination of GA and 

the linear polynomials, higher-order polynomials, splines (multivariate adaptive 

regression splines algorithm), or other non-linear functions, provides multiple models 

with high predictive ability.80-87 

The BuildQSAR88 software was employed to perform variable selection and QSPR 

modeling. The mutation probability was specified as 35%. The length of the equations 

was set for three terms and a constant. The population size was established as 100. The 

GA with an initial population size of 100 rapidly converged (200 generations) and 

reached an optimal QSAR model in a reasonable number of GA generations. The search 



for the best model can be processed in terms of the highest correlation coefficient (R) or 

F-test equations (Fisher-ratio’s p-level [p(F)]), and the lowest standard deviation 

equations (s).88 The quality of models was also determined by examining the Leave-

One-Out (LOO) cross-validation (CV) (q2, scv).89  

 

6. QSPR APPLICATION OF PHYSICOCHEMICAL PROPERTIES OF 

OCTANE ISOMERS 

The decisive criterion of quality for any MD is its ability to describe 

structure-related properties of molecules. In order to illustrate the 

applicability of the novel TOMOCOMD-CARDD descriptors, we 

performed the QSPR models to describe six physicochemical 

properties of octane isomers. In this sense, regressions of octane 

properties based on the non-stochastic and stochastic bilinear indices 

will be compared to some regressions based on 2D (topologic) and 

3D (geometric) descriptors taken from the literature.69,71-76 Precisely, 

to evaluate the quality of the models based on our novel atom-based 

MDs we have taken as references: 1) the models published by 

Randić72-74 based on diverse TIs such as the Wiener matrix invariants, 

2) the equation published by Diudea76 based on the SP indices, and 

3) the best models obtained from a set constituted by the topological 

(69), WHIM (99), and GETAWAY descriptors (197).69 

The best linear models found using non-stochastic and stochastic total and atom-

type bilinear indices are presented in Table 4, together with the statistical information 

for the best regressions with 1, 2, and 3 MDs published so far69,71-76 for each selected 

property of octane isomers.  

Table 4 (click here) 

As it can be appreciated from the statistical parameters of 

regression equations in Table 4, all of the physicochemical properties 

were well described by atom-based bilinear indices. In this table we 

can observe that the statistical parameters for the models obtained 

with atom-level bilinear indices to describe heat of vaporization (HV) 

(Eqs 25 and 26), molar volume (MV) (Eqs 27 and 28) and heat of 

tables.pdf


formation (∆fH) (Eqs 31 and 32) of octanes are better than those 

taken from the literature using 2D and 3D MDs. The second 

physicochemical property, that is MV, is well described exclusively by 

the bond-based linear indices (both non-stochastic and stochastic 

ones). In addition, the obtained QSPR model (Eq. 32) for description 

of ∆fH using only one stochastic linear indix [V-Esb5
H(x ,y)] showed better 

statistical results and predictive power that the equations developed 

from 2D and 3D (and their combination) MDs.  

It should be pointed out that in the models based on the bond-

level chemical linear indices, both regressions for the motor octane 

number (MON) (Eqs 23 and 24) are better-to-similar than the 

models published so far. Only the models found by us to describe 

boiling point (BP) (Eqs 21 and 22) and entropy (S) (Eqs 29 and 30) 

have significant differences with the preceding models obtained by 

applying the selection procedure to the set given by GETAWAY 

descriptors plus WHIM and topological indices. However, these 

properties were described with our approach better than using 

several TIs. 

According to the obtained QSPR results, it is possible to conclude that the novel 

MDs encode some useful molecular information different from that of previously 

proposed descriptors. Moreover, they are quite diverse among themselves being able to 

describe well the variation of different properties of octanes.  

 

7. CONCLUSIONS 

The approach described in this report appears to be a prominent method to find 

quantitative models for description of physical, thermodynamic, or biological 

properties. The novel MDs proposed here have been shown to have some interesting 

features, such as:  

i. Their functional definitions are based on well-known and accepted algorithms 

and formulas in mathematics. These novel atom-based molecular descriptors are 

based on a bilinear map similar to those defined in linear algebra. The atom- and 

group-level as well as atom-type formalism will permit to expedite investigation 

of molecular mechanisms and rational design of molecules at the local level. 



These local bilinear indices together with global ones are now added as a new 

set of MDs to the significant arsenal of whole-molecule indices.  

ii. They can be easily and quickly calculated. That is, the calculation is simple and 

straightforward, requiring only the 2D information. 

iii. They show good prediction power in physicochemical-properties modeling. The 

obtained QSPR models presented here yield a good statistical account of the 

octane data, giving both sound direct statistical as well as the press statistics. 

Further, it was clearly demonstrated that prediction ability was higher than those 

showed by other 2D/3D well-known sets of MDs. 

Despite these positive features of non-stochastic and stochastic atom-based bilinear 

indices, additional study has to be done to further investigate their meaning and 

behaviour with respect to the structural features of the molecules. The applications of 

the present method to QSPR/QSAR and drug-design studies as well as 

similarity/diversity analysis of several classes of organic compounds are now in 

progress and will be the subject of a future publication. 
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