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ABSTRACT 

Novel bond-level molecular descriptors based on linear maps similar to those defined in algebra theory are 

proposed. The kth edge-adjacency matrix (Ek) denotes the matrix of bond linear indices (non-stochastic) 

with respect to the canonical basis set. The kth stochastic edge-adjacency matrix, ESk, is here proposed as a 

new molecular representation easily calculated from Ek. Then, the kth stochastic bond linear indices are 

calculated using ESk as operators of linear transformations. In both cases, the bond-type formalism was 

developed. The kth non-stochastic and stochastic bond-type linear indices values are the sum of the kth non-

stochastic and stochastic bond linear indices values for bonds of the same bond type, respectively. In the 

same way, the kth non-stochastic and stochastic total (whole-molecule) linear indices are calculated by 

summing up the kth non-stochastic and stochastic bond linear indices, correspondingly, of all bonds in the 

molecule. The new bond-based molecular descriptors were tested for suitability for the quantitative 

structure-property relationship (QSPR) by analyzing regressions of novel indices for selected 

physicochemical properties of octane isomers. All the found regression models are very significant from 

the statistical point of view and showed very good stability to data variation in leave-one-out cross-

validation experiments. General performance of the new descriptors in this QSPR studies has been 

evaluated with respect to the well-known sets of 2D/3D molecular descriptors. From the analysis, we can 

conclude that the non-stochastic and stochastic bond-based (total and bond-type) linear indices have an 

overall good modeling capability proving their usefulness in QSPR studies. The approach described in this 

work appears to be a very promising structural invariant, useful not alone for QSPR/QSAR studies, but also 

for similarity/diversity analysis and drug discovery protocols. 
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1. INTRODUCTION 

In the context of new technologies for drug discovery, such as combinatorial chemistry 

and high-throughput screening, molecular descriptors play an important role for the 

analysis of molecular diversity and lead to optimization through well-established 

Quantitative Structure-Property/Activity Relationships (QSPR/QSAR) studies.1-2 The 

so-called topological indices (TIs) are among the most useful molecular descriptors 

known nowadays.3-5 These theoretical indices are numbers that describe the structural 

information of molecules through graph theoretical invariants and can be considered as 

structure-explicit descriptors.6 At present, there are a great number of TIs that can be used 

in QSPR/QSAR studies. However, a simple inspection of the large number of TIs defined 

in the literature shows that many of them are computed with identical mathematical 

equations, by using different molecular matrices. There are two main sources of TIs, the 

vertex (atom)-based adjacency (A) and distance (D) matrices,1-7 furthermore the number 

and diversity of the graph invariants is so wide that this makes it difficult to find general 

relations for the so-derived molecular fingerprints. 

The edge (bond)-adjacency relationships have also been used in the generation of new 

TIs. Their matrix form has been considered and explicitly defined in the chemical graph 

theory literature, but has received very little attention in both chemical and mathematical 

literature. Nevertheless, in the last decade Estrada rediscovered this matrix as an 

important source of graph theoretical invariants useful in the generation of new molecular 

descriptors.1 For instance, first the є index was defined by this author8 using the Randić-

type graph-theoretical invariant. That is to say, this new index is analogous to the Randić 

branching index but calculated by edge degrees instead of vertex degrees. 

In a second work, our research group9 extends the edge adjacency matrix E in molecular 

graph in a 3D-E matrix in order to generate the so-colled topographic edge-connectivity 

index є(ρ), also using the Randić-type graph-theoretical invariant. Later, Estrada used the 

same edge adjacency relationships in the generation of the a new family of TIs, spectral 

moments of the E-matrix.10 The analogous concept of spectral moments of vertex-

adjacency matrix had also been discussed previously by different authors.11 Afterward, 

Estrada et al.12 introduced a extended set of edge connectivity indices, mєt(G), using the 

same way in which the branching index of Randić was extended to the series of 
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molecular connectivity indices. Finally, a novel graph theoretical polynomial, Pє(G, x), 

counting the edge connectivity was introduced by the same researcher.13 The first 

derivative of this polynomial evaluated for x = 0 is equal to the edge-connectivity index 

of the molecular graph. A series of edge-connectivity indices modified to include long-

range bond contributions, єc(x), was obtained by this author using values of x different 

from zero. Such edge-adjacency relationships will be applied in the present report in 

order to generate a series of bond-based molecular descriptors to be used in drug design 

and chemoinformatic studies. 

On the other hand, TIs can be classified as “global” and “local” according to the way in 

which they characterize the molecular structure, although most of them can be considered 

as global molecular fingerprints.14 One exception in this sense is the electrotopological 

state (E-state) index.15 Other “global” descriptors such as spectral moments of the edge-

adjacency matrix had been redefined in local form.14 The great success of the E-state and 

edge-based spectral moments in QSPR/QSAR recently stimulated us to propose and 

validate some novel total and local descriptors based on a topological (edge-adjacency 

relationships) characterization of the molecular structure. In this sense, in a manner 

similar to that for the atom- and atom-type level E-State, an E-State index for bonds and 

bond-type has been proposed. The bond-based E-State indices provided an improvement 

of 25% with regard to the atom-based E-State indices in the description of the boiling 

point of 372 alkanes, alcohols, and chloroalkanes.15 

Recently, one of the present authors, Y. M-P, has introduced a new set of atom-level 

molecular descriptors of relevance to QSAR/QSPR studies and ‘rational’ drug design, 

atom linear indices fk(xi).16 These local (atom and atom-type) indices are based on the 

calculation of linear maps in ℜ n in canonical basis. The description of the significance-

interpretation and the comparison to other molecular descriptors was also performed.16 

This approach describes changes along the time in the electronic distribution throughout 

the molecular backbone.16-19 Specifically, the features of the kth total and local linear 

indices were illustrated by examples of various types of molecular structures, including 

chain length and branching as well as content of heteroatoms, and multiple bonds.16 

Additionally, the linear independence of the atom-type linear fingerprints to 229 other 

0D-3D  molecular descriptors was demonstrated. In this sense, it was concluded that local 
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(atom-based) linear fingerprints are independent indices, which contain important 

structural information to be used in QSPR/QSAR and drug design studies.16  

This -in silico- method has been successfully applied to the prediction of several 

physical, physicochemical and chemical properties of organic compounds.17 These atom-

level molecular descriptors, and their stochastic forms,18,19 have also been useful for the 

selection of novel subsystems of compounds having a desired property/activity. In this 

sense, it was successfully applied to the virtual (computational) screening of novel 

anthelmintic compounds, which were then synthesized and in vivo evaluated on Fasciola 

hepatica.20 Studies for the fast-track discovery of novel antibacterial and antimalarial 

compounds were also conducted with this theoretical approach.18-19 In addition, the 

molecular linear indices have been extended to consider three-dimensional features of 

small/medium-sized molecules based on the trigonometric-3D-chirality-correction factor 

approach.21 Finally, promising results have been found in the modeling of the interaction 

between drugs and HIV Ψ-RNA packaging-region in the field of bioinformatics using the 

nucleic acid’s linear indices.22 An alternative formulation of our approach for structural 

characterization of proteins was also carried out recently.23 This extended method was 

used to encompass protein stability studies –specifically how alanine substitution 

mutation on Arc repressor wild-type protein affects protein stability– by means of a 

combination of protein linear or quadratic indices (macromolecular fingerprints) and 

statistical (linear and non-linear model) methods.23 

We propose in this paper a new local (bond and bond-type) and total molecular 

descriptors based on the adjacency of edges. We also propose in this paper a new matrix 

representation of the molecule on the “stochastic” adjacency of edges and linear indices 

derived from there. In addition, the correlation ability of the new descriptors is tested in a 

QSPR study of some physicochemical properties of octanes. 

 

2. THEORETICAL FRAMEWORK 

The basis of the extension of linear indices that will be given here is the edge-adjacency 

matrix considered and explicitly defined in the chemical graph-theory literature,24,25 and 

rediscovered by Estrada as an important source of new molecular descriptors.8-10, 12-14 In 

this section, we first will define the nomenclature to be used in this work, then the atom-
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based molecular vector (X) will be redefined for bond characterization using the same 

approach as previously reported, and finally some new definition of bond-based non-

stochastic and stochastic linear indices will be given. 

2.1. Background in Edge-Adjacency Matrix 

Let G = (V, E) be a simple graph, with V = {v1, v2, ..., vn} and E = {e1, e2, ...em} being the 

vertex- and edge-sets of G, respectively. Then G represents a molecular graph having n 

vertices and m edge (bonds). The edge-adjacency matrix E of G (likewise called bond-

adjacency matrix, B) is a square and symmetric matrix whose elements eij are 1 if and 

only if edge i is adjacent to edge j.1,10,14 Two edges are adjacent if they are incidental to a 

common vertex. This matrix corresponds to the vertex-adjacency matrix of the associated 

line graph. Finally, the sum of the ith row (or column) of E is named the edge-degree of 

bond i, δ(ei).1,8,12,13 

2.2. New Edge-Relations: Stochastic Edge-Adjacency Matrix 

By using the edge (bond)-adjacency relationships we can find other new relation for a 

molecular graph that will be introduced here. The kth stochastic edge-adjacency matrix, 

ESk can be obtained directly from Ek. Here, ESk = [kesij] is a square table of order m (m = 

number of bonds) and the elements kesij are defined as follows: 

i
k

ij
k

i
kk

ij
k

ij
k

e
e

ESUM
e

es
)()( δ

==                                                                                         (1) 

where, keij are the elements of the kth power of E and the SUM of the ith row of Ek are 

named the k-order edge degree of bond i, i
k e)(δ . Note that the matrix ESk in Eq. 1 has the 

property that the sum of the elements in each row is 1. An mxm matrix with nonnegative 

entries having this property is called a “stochastic matrix”.26  

2.3. Structural Representation Although of the Bond-Based Molecular Vector 

The atom-based molecular vector (X) used to represent small-to-medium size organic 

chemicals have been explained in some detail elsewhere.16-20,27-35 In a manner parallel to 

the development of X, we present the expansion of the bond-based molecular vector (W). 

The components (w) of W are numeric values, which represent a certain standard bond 

property (bond-label). That is to say, these weights correspond to different bond 

properties for organic molecules. Thus, a molecule having 5, 10, 15,..., m bonds can be 

represented by means of vectors, with 5, 10, 15,..., m components, belonging to the 
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spaces  ℜ 5, ℜ 10, ℜ 15,...,ℜ m, respectively; where m is the dimension of the real sets 

(ℜ m). This approach allows us encoding organic molecules such as 2-hydroxybut-2-

enenitrile through the molecular vector W = [wCsp3-Csp2, wCsp2=Csp2, wCsp2-Osp3, wH-Osp3, 

wCsp2-Csp, wCsp≡Nsp]. This vector belongs to the product space ℜ 6.  

These properties characterize each kind of bond (and bond-types) within the molecule. 

Diverse kinds of bond weights (w) can be used in order to codify information related to 

each bond in the molecule. These bond labels are chemically meaningful numbers such as 

standard bond distance,36-39 standard bond dipole36-39  or even mathematical expressions 

involving atomic weights such as atomic Log P,40 surface contributions of polar atoms,41 

atomic molar refractivity,42 atomic hybrid polarizabilities,43 and Gasteiger-Marsilli 

atomic charge,44 atomic electronegativity in Pauling scale45 and so on. Here, we 

characterized each bond with the following parameter:  

wi = xi /δi + xj/ δj                                                                                                                (2) 

which characterizes each bond. In this expression xi can be any standard weight of the 

atom i bonded with atom j. δi is the vertex (atom) degree of atom i. The use of each scale 

(bond property) defines alternative molecular vectors, W. 

2.4. Calculation of Linear Indices for Bonds, Bond-Types and the Whole Molecule 

If a molecule consists of m bonds (vector of ℜ m), then the kth bond linear indices for 

bond i in a molecule, are calculated as linear maps on ℜ m (endomorphism on ℜ m) in 

canonical basis set. Specifically, the kth non-stochastic and stochastic bond linear indices, 

fk(wi) and sfk(wi), are computed from these kth non-stochastic and stochastic edge-

adjacency matrices, Ek and ESk, as shown in Eqs. 3 and 4, respectively: 

== ∑
=

m
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[W’]k = Ek[W]                                                                              (3)  

== ∑
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jij
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s weswf
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[WS’]k = ESk[W]                                                                      (4)                                 

where m is the number of bonds of the molecule and wj are the coordinates of the bond-

based molecular vector (W) in the so-called canonical (‘natural’) basis. In this basis 

system, the coordinates of any vector W coincide with the components of this vector.26,46-

47 For that reason, those coordinates can be considered as weights (bond-labels) of the 
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edge of the molecular graph. The coefficients keij and kesij are the elements of the kth 

power of the matrix E(G) and ES(G), correspondingly, of the molecular graph. The 

defining equation (3) and (4) for fk(wi) and sfk(wi), respectively, may be also written as 

the single matrix equation, where [W] is a column vector (an mx1 matrix) of the 

coordinates of W in the canonical basis of ℜ m. Here, Ek and ESk denote the matrices of 

linear maps with respect to the natural basis set. 

Note that both bond linear indices are defined as a linear transformation fk(wi) on 

molecular vector space ℜ m. This map is a correspondence that assigns a vector f(w) to 

every vector W in ℜ m in such a way that: 

f(λ1W1 + λ2W2) = λ1f(W1) + λ2f(W2)                                                                              (5) 

for any scalar λ1,λ2 and any vector W1, W2 in ℜ m.  

Total (whole-molecule) bond-based non-stochastic and stochastic linear indices, fk(w) 

and sfk(w), are calculated from local (bond) linear indices as shown in Eqs. 6 and 7, 

correspondingly: 

)()(
1

i

m

i
kk wfwf ∑

=

= = [u]t [W’]k = [u]t Ek[W]                                                       (6)  

)()(
1

i

m

i
k

s
k

s wfwf ∑
=

= = [u]t [WS’]k = [u]t ESk[W]                                               (7)  

where m is the number of bonds, and fk(wi) and sfk(wi) are the non-stochastic and 

stochastic bond linear indices obtained by Eqs. 3 and 4, respectively. Then, both total 

linear form, fk(w) and sfk(w), can also be written in matrix form for each molecular vector 

W∈ℜ n, where [u]t is an n-dimensional unitary row vector. As it can be seen, the kth total 

linear indices (both non-stochastic and stochastic) are calculated by summing the local 

(bond) linear indices of all bonds in the molecule. 

Finally, in addition to total and bond linear indices computed for each bond in the 

molecule, a local-fragment (bond-type) formalism can be developed. The kth bond-type 

linear index of the edge-adjacency matrix is calculated by summing up the kth bond linear 

indices of all bonds of the same bond type in the molecule. That is to say, this extension 

of the bond linear index is similar to the group additive schemes, in which an index 
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appears for each bond type in the molecule together with its contribution based on the 

bond linear index. Consequently, if a molecule is partitioned into Z molecular fragments, 

the total non-stochastic [or stochastic] linear indices can be partitioned into Z local non-

stochastic [or stochastic] linear indices fkL(w) [or sfkL(w)], L = 1, …, Z. That is to say, the 

total (both non-stochastic and stochastic) linear indices of order k can be expressed as the 

sum of the local linear indices of the Z fragments of the same order: 

)()(
1

wfwf
Z

L
kLk ∑

=

=                                                                                               (8) 

)()(
1

wfwf
Z

L
kL

s
k

s ∑
=

=                                                                                           (9)  

In the bond-type linear indices formalism, each bond in the molecule is classified into a 

bond-type (fragment). In this sense, bonds may be classified into bond types in terms of 

the characteristics of the two atoms that define the bond. For all data sets, including those 

with a common molecular scaffold as well as those with very diverse structure, the kth 

fragment (bond-type) linear indices provide much useful information. Thus, the 

development of the bond-type linear indices description provides the basis for application 

to a wider range of biological problems in which the local formalism is applicable 

without the need for superposition of a closely related set of structures. 

It is useful to perform a calculation on a molecule to illustrate the steps in the procedure. 

For this, in the next section I depict a pictorial representation of the calculus of the non-

stochastic and stochastic linear indices of the bond matrix (both total and local) using a 

simple chemical example. In that section, I will also stand out that our approach is rather 

similar to the LCBO-MO (Linear Combination of Bond Orbitals-Molecular Orbitals) 

method (e.g., for k = 1).48 LCBO-MO is another way of forming molecular orbitals by 

taking linear combinations of functions associated with the different bonds in the 

molecule. In this sense, MOs are made up as LCBO of bonds composing the system, i.e. 

are written in the form, 

j

n

j
iji Yc∑

=

=
1

ϕ                                                                                                                  (10)    
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where i is the number of the MO, ϕ [in our case,  f1(wi)]; j are the numbers of bond Y–

orbitals (in our case, wj); cij (in our case, 1eij or 1esij for non-stochastic and stochastic 

indices, respectively) are  the numerical coefficients defining the contributions of 

individuals BOs to the given MO. Although the LCAO (Linear Combination of Atom 

Orbitals) approximation has been particularly useful for the study of conjugated 

hydrocarbons, the LCBO method has been particularly applied to the calculation of 

properties of saturated hydrocarbons. As a saturated molecule can be considered as made 

up of localized bonds, it is reasonable to associate an orbital to each of the corresponding 

regions.48  

2.5. Sample Calculation  

The linear indices of the bond matrix are calculated in the following way. Considering 

the molecule of 2-hydroxybut-2-enenitrile as a simple example, we have the following 

labeled molecular graph and bond-based adjacency matrices (E and ES). The second (k = 

2) and third (k = 3) power of these matrices and bond-based molecular vector, W, are also 

given: 
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The molecule contains five localized bonds (Corresponding to five edges in the H-

suppressed molecular graph). To these we will associate the five “bond orbitals” w1, w2, 

w3, w4, and w5. Thus, W = [w1, w2, w3, w4, w5] = [w(C-C), w(C=C), w(C-C), w(C≡N), w(C-O)] and 
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each “bond orbital” can be computed by Eq. 2 using, for instance, the atomic 

electronegativity in Pauling scale (x)45 as atomic weight (atom-label): 

w1 = xC /1 + xC /3 = 2.55/1 + 2.55/3 = 3.4 

w2 = xC /3 + xC /4 = 2.55/3 + 2.55/4 = 1.4875 

w3 = xC /4 + xC /4 = 2.55/4 + 2.55/4 = 1.275 

w4 = xC /4 + xN /3 = 2.55/4 + 3.04/3 = 1.650833 

w5 = xC /4 + xO /1 = 2.55/4 + 3.44/1 = 4.0775 

and therefore, W = [3.4, 1.4875, 1.275, 1.650833, 4.0775] 

Each non-stochastic and stochastic “molecular orbital” will have the form: 

fk(wi) = kei1w1 + kei2w2 + kei3w3 + kei4w4 + kei5w5                                                                                               (11) 
sfk(wi) = kesi1w1 + kesi2w2 + kesi3w3 + kesi4w4 + kesi5w5                                                                                   (12) 

The keii’s and kesii’s can be considered to measure a the attraction of an electron for a 

bond in the k step. The keij’s and kesij’s are the terms of interaction between two bonds in 

the k step. The keij = keji are equal by symmetry (non-oriented molecular graph). However, 
kesij’s ≠ kesji’s. This is a logical result because the kth  esij elements are the transition 

probabilities with the ‘electrons’ moving from bond i to j at the discrete time periods tk 

and it should be different in both senses. This result is in total agreement if the 

electronegativity of the two atom types in the bonds are taken into account. 

In this way, Ek and ESk can be seen as graph–theoretic electronic–structure models.49 

In fact, quantum chemistry starts from the fact that a molecule is made up of electrons 

and nuclei. The distinction here between bonded and non-bonded atoms is difficult to 

justify. Any two nuclei of a molecule interact directly and indirectly through the electrons 

present in the molecule. Only the intensity of this interaction varies on going from one 

pair of nuclei to another. In this sense, the electron in an arbitrary bond i can move (step-

by-step) to other bonds at different discrete time periods tk (k = 0, 1, 2, 3,…) through the 

chemical-bonding network. That is to say, the E1 and ES1 matrices consider the valence-

bond electrons in one step and their power (k = 0, 1, 2, 3…) can be considering as an 

interacting–electron chemical–network model in k step. This model can be seen as an 

intermediate between the quantitative quantum-mechanical Schrödinger equation and 

classical chemical bonding ideas.49  
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On the other hand, the kth (k = 0-3) non-stochastic bond linear indices can be 

calculated for this molecule as follows: 

== ∑
=

5
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0
0 )(
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and stochastic linear indices for each bond i can be computed for this molecule in a 

similar form: 
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The total non-stochastic linear indices can be expressed as the sum of the local (bond) 

linear indices for this molecule as follows: 

)()(
5

1
00 i

i
wfwf ∑

=

= = [u]t [W’]0= [u]t E0[W] = f0(w1)+ f0(w2)+ f0(w3)+ f0(w4)+ f0(w5)        

                                          = 3.4 +1.4875 +1.275 +1.650833 +4.0775 = 11.89083                                              

)()(
5

1
11 i

i
wfwf ∑

=

= = [u]t [W’]1= [u]t E1[W] = f1(w1)+ f1(w2)+ f1(w3)+ f1(w4)+ f1(w5) 

                                         = 1.4875 +8.7525 +7.215833 +1.275 +2.7625 = 21.49333                                        

)()(
5

1
22 i

i
wfwf ∑

=

= = [u]t [W’]2= [u]t E2[W] = f2(w1)+ f2(w2)+ f2(w3)+ f2(w4)+ f2(w5)  

                                          = 8.7525 +11.46583 +12.79 +7.215833 +15.96833 = 56.1925                                  
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)()(
5

1
33 i

i
wfwf ∑

=

= = [u]t [W’]3 = [u]t E3[W] = f3(w1)+ f3(w2)+ f3(w3)+ f3(w4)+ f3(w5) 

                                          = 11.46583 +37.51083 +34.65 +12.79 +24.25583 = 120.6725                                  

The terms in the summations for calculating the total linear indices are the so-colled bond 

linear indices. We have written these terms in the consecutive order of the bond labels in 

the graph. For instance, the non-stochastic bond linear indices of order 0, 1, 2 and 3 for 

the bond labeled as 1 are 3.4, 1.4875, 8.7525, and 11.46583, respectively. 

The kth total stochastic linear indices values are also the sum of the kth local (bond) 

stochastic linear indices values for all bonds in the molecule: 

)()(
5

1
00 i

i

ss wfwf ∑
=

= = [u]t [WS’]0= [u]t ES0[W] = sf0(w1) + sf0(w2) + sf0(w3) 

                    + sf0(w4) + sf0(w5) = 3.4 +1.4875 +1.275 +1.650833 +4.0775 = 11.89083                                       

)()(
5

1
11 i

i

ss wfwf ∑
=

= = [u]t [WS’]1= [u]t ES1[W] = sf1(w1) + sf1(w2) + sf1(w3) 

                  + sf1(w4) + sf1(w5) = 1.4875 +2.9175 +2.405278 +1.275 +1.38125 = 9.466528                                

)()(
5

1
22 i

i

ss wfwf ∑
=

= = [u]t [WS’]2= [u]t ES2[W] = sf2(w1) + sf2(w2) + sf2(w3) 

        + sf2(w4) + sf2(w5) = 2.9175 +1.910972 +2.131667 +2.405278 +2.661389 = 12.02681                               

)()(
5

1
33 i

i

ss wfwf ∑
=

= = [u]t [WS’]3 = [u]t ES3[W] = sf3(w1) + sf3(w2) + sf3(w3) 

         + sf3(w4) + sf3(w5) = 1.910972 +2.500722 +2.31 +2.131667 +2.021319 = 10.87468                                  

3. QSPR Studies  

The decisive criterion of quality for any molecular descriptor is its ability to describe 

structure-related properties of molecules. With this objective we developed the QSPR 

models to describe seven physicochemical properties of octane isomers. The use of 

octanes as a very suitable data set for testing topological indices has been advocated by 

Randić and Trinajstić.50,51 In fact, this dataset has been used by several researchers to 

evaluate the modeling power of their new molecular descriptors.13,52-58 This selection is 

recommended due to the most of the fact that physicochemical properties commonly 

studied in QSPR analyses with topological indices are interrelated for data sets of 

compounds with different molecular weights, for instance for alkanes with two to nine 
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carbon atoms. These correlations are not necessarily observed when the same indices are 

used in isomeric data sets of compounds, such as the octane data set. In addition, these 

properties are hardly interrelated when octanes are used as a data set.59 On the other hand, 

all topological indices are designed to have (gradual) increments with the increments in 

the molecular weight. By this way, if we do the present study by using a series of 

compounds having different molecular weights, we will find “false” interrelations 

between the indices by an overestimation of the size effects inherent to these 

descriptors.13,52 The same is also valid when the QSPR model is to be obtained. It is not 

difficult to find “good” linear correlations between TIs and physicochemical properties of 

alkanes in data sets with great size variability.13,52 In fact, the simple use of the number of 

vertices in the molecular graph produced regression coefficients greater than 0.97 for 

most of the physicochemical properties of C2-C9 alkanes studied by Needham et al.60 

However, when data sets of isomeric compounds are considered, typically correlations 

that have high correlation coefficients when molecules of different size were considered 

will no longer show such good linear correlation. In conclusion, if a new proposed 

molecular descriptor is not able to model the variation of at least one property of octanes, 

then it probably does not contain any useful molecular information. Moreover, octanes 

constituted a good set of chemicals for comparative study, since many experimental data 

among their physicochemical properties are available. In this sense, we analyzed the 

quality of the QSPR models obtained to describe the boiling point (BP), motor octane 

number (MON), heat of vaporization (HV), molar volume (MV), entropy (S), and heat of 

formation (∆fH) of the octane isomers. In addition, regressions of octane properties based 

on the non-stochastic and stochastic linear indices will be compared to some regressions 

based on 2D (topologic) and 3D (geometric) descriptors taken from the literature.13,52-58 

Precisely, to evaluate the quality of the models based on our new bond-level chemical 

descriptors we have taken as the reference: 1) the models published by Randić54-56 based 

on diverse topological indices such as the Wiener matrix invariants, 2) the equation 

published by Diudea58 based on the SP indices, and 3) the best models obtained with a set 

constituted by the topological (69), WHIM (99), and GETAWAY descriptors (197).53 

The total and local (bond-type) bond-based linear indices used to search for the best 

regression of the selected physicochemical properties of octanes were calculate by the 
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TOMOCOMD-CARDD (acronym of TOpological MOlecular COMputer Design-

Computer Aided “Rational” Drug Design) program.61 This software is an interactive 

program for molecular design and bioinformatic research. The software was developed 

based on a user-friendly philosophy. That is to say, this computer graphics software 

shows a great efficiency of interaction with the user, without prior knowledge of 

programming skills (e.g. practicing pharmaceutic and organic chemist, teacher, university 

student, and so on). CARDD subprogram allows drawing the structures (drawing mode) 

and calculating 2D (topologic), 3D-chiral (2.5D) and 3D (geometric and topographic) 

non-stocahstic and stochastic molecular descriptors (calculation mode). The bond–based 

TOMOCOMD-CARDD descriptors computed in this study were the following: 

1)   kth (k = 15) total non-stochastic bond-based linear indices not considering and 

considering H-atoms in the molecular graph (G) [fk(w) and fk
H(w), respectively]. 

2) kth (k = 15) total stochastic bond-based linear indices not considering and considering 

H-atoms in the molecular graph (G) [sfk(w) and sfk
H(w), respectively]. 

3)   kth (k = 15) bond-type (C-H in methyl group) non-stochastic and stochastic linear 

indices considering H-atoms in the molecular graph (G) [fkL
H(wC-H) and sfkL

H(wC-H), 

correspondingly]. These local descriptors are calculated taken into account only one 

of the three bond types for carbon-hydrogen bonds (Cprimary-H) that there are for 

octanes data.  

These kth total and local bond-based linear indices were used as molecular descriptors for 

derived QSARs. One of the difficulties with the large number of descriptors is deciding 

which ones will provide the best regressions, considering both goodness of fit and the 

chemical meaning of the regression. In addition, as testing a large number of all possible 

combinations of variables would be a tedious task and time-consuming procedure, we 

have used a genetic algorithm (GA) input selection.62-67 GAs are a class of algorithms 

inspired by the process of natural evolution in which species having a high fitness under 

some conditions can prevail and survive to the next generation; the best species can be 

adapted by crossover and/or mutation in the search for better individuals. Genetic 

function approximation (GFA), a combination of GA and the linear polynomials, higher-

order polynomials, splines (multivariate adaptive regression splines algorithm), or other 

non-linear functions, provides multiple models with high predictive ability.62-70  
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The software BuildQSAR71 was employed to perform variable selection and QSAR 

modeling. The mutation probability was specified as 35%. The length of the equations 

was set three-four terms and a constant. The population size was established as 100. The 

GA with an initial population size of 100 rapidly converged (200 generations) and 

reached an optimal QSAR model in a reasonable number of GA generations. 

The search for the best model can be processed in terms of the highest correlation 

coefficient (R) or F-test equations (Fisher-ratio’s p-level [p(F)]), and the lowest standard 

deviation equations (s).71 The quality of models was also determined by examining the 

Leave-One-Out (LOO) cross-validation (CV) (q2, scv).72 In recent years, the LOO press 

statistics (e.g., q2) have been used as a means of indicating predictive ability. Many 

authors consider high q2 values (for instance, q2 > 0.5) as an indicator or even as the 

ultimate proof of the high-predictive power of an QSAR model.  

The best linear models found using non-stochastic and stochastic total and bond-type 

linear indices are presented in Table 1. For each selected property of octane isomers, the 

statistical information for the best regressions with 1, 2, and 3 molecular descriptors 

published so far are also depicted in Table 1. Together with the LOO cross-validated 

explained variance (q2
LOO), the determination coefficient (R2), the standard estimate of 

the error (s), and Fischer ratio (F) are listed. The molecular descriptor symbols are 

reported in eighth column, and the last column in the table contains the references of the 

models taken from the literature. 

 

Table 1. Statistical Information for Best Multiple Regression Models of Selected Physicochemical Properties of 
Octane Isomers. 

Property Method size Q2
LOO

 R2 s F Model Descriptors Ref. 
Boiling Point (BP) NonStochastic Bond-based 

Linear indices  
3 92.81 95.13 1.487 91.143 BP = 137.99 -1.47f2L

H(wC-H)  
       +0.07f4L

H(wC-H) -1.51f1L
H(wC-H)      (13)    

 

 Stochastic Bond-based 
Linear indices 

3 92.86 96.29 1.298 121.07 BP = 43.84 -17.19 sf2
H(w) +22.78 sf3

H(w) 
         -4.18sf13L

H(wC-H)                            (14)    
 

 getaway + whim + top. 3 98.12 98.78 0.744  2χ 2 χ  HATS6(p) 53 

 getaway 3 97.10 98.32 0.897  HATS2(v) R4(u) R6(v) 53 
 getaway + whim + top. 2 96.62 97.58 1.013  2χ  HATS6(p) 53 
 topological 3  95.84 1.394  S3W S4W SJ 58 
 topological 2  94.78 1.508  S3W S4W  58 
 getaway 2 84.86 89.62 2.098  HATS2(m) R+

4(u)  53 
 topological 2  81.36 2.810  WW x1 56 
 topological 1  78.85 2.90  Z 55 
 getaway + whim + top. 1 66.47 74.64 3.175  HATS2(m) 53 
 topological 1  67.77 3.630  2χ W 58 
Motor Octane  
Number (MON) 

NonStochastic Bond-based 
Linear indices  

3 98.90 99.37 2.871 687.66 MON = -349.3-2.47x10-4 f10
H(w)  

 -2.33x10-6 f14L
H(w) +1.33x10-5 f13

H(w)  (15)   
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 Stochastic Bond-based 
Linear indices 

3 97.73 98.51 4.424 287.16  MON = -243.98 +168.91 sf10
H(w)  

         +29.65 sf1L
H(wC-H) -160.38 sf6

H(w) (16)    
 

 getaway + whim + top. 3 98.58 99.23 2.439  vID
M Ts HATS1(m) 53 

 getaway 3 97.42 98.62 3.259  HATS4(u) HATS7(v) R7(p) 53 
 topological 3  98.05 3.855  Sχ1W χ7W χ3W 58 
 getaway + whim + top. 2 96.77 97.68 4.053  Ts H4(e) 53 
 getaway 2 91.28 95.78 5.466  HATS7(m) R4(u) 53 
 topological 2  95.64 5.533  Sχ1W Sχ3W 58 
 topological 1  95.22 5.589  Χ7W  58 
 getaway + whim + top. 1 90.83 92.40 7.069  Ts 53 
 topological 1  91.97 7.270  IwD 55 
 getaway  1 85.64 88.98 8.515  REIG 53 
Heat of Vaporization 
(HV) 

NonStochastic Bond-based 
Linear indices  

3 95.53 97.57 0.348 187.03 HV = 156.95 -0.63 f2
H(w) +0.003 f4(w)   

          +0.05 f3
H(w)                                  (17)   

 

 Stochastic Bond-based 
Linear indices 

3 96.51 97.92 0.321 220.17 HV = 127.48 -4.20 sf2
H(w) -5.03 sf1L

H(wC-H)   
          +3.36 sf3L

H(wC-H)                           (18)   
 

 getaway + whim + top. 3 97.57 98.42 0.281  0 χ 3κ R+
6(u) 53 

 getaway  3 95.46 97.18 0.375  HATS6(u) R4(u) R+
1(m) 53 

 getaway + whim + top. 2 95.18 96.53 0.402  2χ   R+
6(u) 53 

 topological 3  95.65 0.459  χ1W χ2W χ3W 58 
 getaway  2 93.15 94.87 0.488  HATS4(u) R6(e) 53 
 topological 2  92.62 0.577  4W 5W  58 
 topological 1  91.78 0.429  Z  55 
 getaway + whim + top. 1 80.80 88.61 0.705  2χ    53 
 getaway  1 79.74 85.70 0.790  R2(m) 53 
 topological 2  84.27 0.820  WW x1 56 
 Molar Volume (MV) NonStochastic Bond-based 

Linear indices  
3 98.29 99.12 0.265 488.99 MV = 76.65 -0.23 f3

H(w) +1.45 f2
H(w)   

          -0.06 f2(w)                                    (19)    
 

 Stochastic Bond-based 
Linear indices 

3 
 

87.79 92.75 0.761 55.442 MV = 145.71 +1.05 sf1(w) -4.01 sf3L
H(wC-H) 

          +4.28 sf2L
H(wC-H)                           (20)   

 

 getaway + whim + top. 3 75.96 92.01 1.825  Ks R+
6(u) RT+(m) 53 

 getaway  3 69.27 90.33 2.008  HATS6(p) RT+(m) R1(v) 53 
 topological 3  88.29 2.210  5W 6W 7W 58 
 getaway + whim + top. 2 54.49 84.96 2.419  vID

M  R+
6(u)  53 

 getaway  2 45.49 81.79 2.662  R+
6(u) R4(v) 53 

 getaway + whim + top. 1 32.66 67.61 3.437    R6(v)  53 
 topological 2  62.76 3.807  3W 4W 58 
 topological 1  60.85 3.780  7W 58 

 
 
 
 
Table 1. Cont. 

Property Method size Q2
LOO

 R2 s F Model Descriptors Ref. 
Entropy (S) NonStochastic Bond-based 

Linear indices 
1 90.33 92.48 1.277 196.67 S = 117.55 -0.09 f2(w)                            (21)     

 Stochastic Bond-based 
Linear indices 

1 91.63 93.51 1.185 230.77 S = 197.04 -6.53 sf3
H(w)                          (22)    

 getaway + whim + top. 3 97.17 97.96 0.711  vID,deg TWC R+
2(p)  53 

 getaway + whim + top. 2 96.42 97.14 0.814  vID,deg TWC  53 
 getaway 3 93.45 95.84 1.016  ISH HATS8(m) R3(v) 53 
 getaway 2 92.19 94.76 1.101  ISH R3(v) 53 
 getaway + whim + top. 1 89.86 92.51 1.274  R3(v) 53 
 topological 1  91.10 1.400  χ[1/2] 55 
 topological 2  81.72 2.060  x1 x2

 56 
Heat of Formation 
(∆fH) 

NonStochastic Bond-based 
Linear indices 

2 91.30 92.23 0.371 88.975 ∆fH = 8.05 -0.32 f2
H(w)  

           +2.06x10-10 f15
H(w)                      (23)    

 

 Stochastic Bond-based 
Linear indices 

3 86.56 91.45 
 

0.403 49.928 ∆fH = 23.91 -2.23 sf10(w) -51.58 sf9
H(w) 

+49.45 sf8
H(w)                                         (24)    

 

 getaway + whim + top. 3 95.06 96.60 0.254  HATS5(m) HATS7(m) R4(e) 53 
 getaway + whim + top. 2 90.96 93.24 0.346  2χ  HATS2(e)  53 
 getaway  2 90.18 92.87 0.356  HATS7(u) R2(m) 53 
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 getaway + whim + top. 1 87.18 89.34 0.421  HATS2(m)  53 
 topological 3  87.05 0.492  Ω1 Ω2 Ω3 54 
 topological 2  86.86 0.478  Ω1 Ω2 54 
 topological 1  86.68 0.471  1/2χ 55 
 topological 2  78.70 0.570  WW x1 56 

 

) 

As can be appreciated from the statistical parameters of regression equations in Table 1, 

all of the physicochemical properties were well described by bond-based linear indices. 

In this table we can observe that the statistical parameters for the models obtained with 

bond-based linear indices to describe motor octane number (MON) (Eqs 15 and 16) and 

molar volume (MV) (Eqs 19 and 20) of octanes are better than those taken from the 

literature. The first physicochemical property, that is, MV, is well-described exclusively 

by the bond-based linear indices. Note also that in the models based on the bond-level 

chemical linear indices, the two regressions for the heat of vaporization (HV) (Eqs 17 and 

18) are better-to-similar than the models published so far. Only the models found by us to 

describe boiling point (BP) (Eqs 13 and 14), entropy (S) (Eqs 21 and 22), and heat of 

formation (∆fH) (Eqs 23 and 24) have significant differences with the precedent models 

obtained by applying the selection procedure to the set given by GETAWAY descriptors 

plus WHIM and topological indices. 

According to the obtained QSPR results, it is possible to conclude that the new 

descriptors encode some useful molecular information different from that of previous 

proposed descriptors. Moreover, they are quite diverse among themselves being able to 

describe well the variation of different properties of octanes.  

 

4. CONCLUDING REMARKS 

The total and local (bond and bond-type) linear indices of the non-stochastic and 

stochastic edge adjacency matrices are novel sets of graph-theoretical descriptors. These 

indices have a series of important features that make them useful molecular descriptors to 

be employed in QSPR/QSAR studies, similarity/diversity analysis and drug design 

protocols. The correlations found by these new sets of bond-level chemical descriptors 

for the description of six representative physicochemical properties of octane isomers can 

be considered as statistically significant. The approach described in this paper appears to 
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be a promissory method to find in silico models for description of physical, chemical and 

biological properties. Applications of theses new descriptors in molecular 

property/activity modeling, similarity/diversity analysis and biosilico drug discovery will 

be published in subsequent papers.   
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