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Graphical Abstract: 

 

Abstract: Flavonoids are known to showcase anti-inflammatory abilities. Hence, it is not a wild guess that 

they might inhibit NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome signaling, 

implying these chemicals could inspire new drug candidates for this pathway. Thus, this work aims to identify 

flavonoids as potential NLRP3 inhibitors, using virtual screening of 100 known compounds through 

molecular docking, molecular dynamics, and MM/PBSA calculations. In this way, Dorsmanin C (DC) and 

Poinsettifolin A (PA) were the best compounds after molecular docking, binding to critical residue Arg578, 

which is essential for activity. In MD simulations, PA provides the best stability at the binding site of the 

target, better than DC and NP3-146 (known inhibitor), demonstrated by RMSD, RMSF, Rg, and SASA plots. 

Next, MM/PBSA calculations provide the best binding energy for NP3-146 compared to PA and DC, yet PA 

still proves superior to DC regarding target affinity. Therefore, Poinsettifollin A is the most promising 

candidate, highlighting it as a potential lead for developing novel anti-inflammatory drugs targeting NLRP3. 
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1. Introduction 

Inflammation is an organism's primary response as protection from infection or injury. In mammals, 

inflammation causes vasodilation and permeation of the vascular endothelium through the recruitment 

and activation of immune cells. The normal inflammatory response allows the removal of harmful 

stimuli and the restoration of homeostasis. However, exacerbated inflammation can lead to chronicity 

and harm the body [1,2]. The initiation of the inflammatory response depends on the recognition of 

pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) 

by pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and Toll-like receptors 

(TLRs), such as the nucleotide-binding oligomerization domain (NLRs) [3]. 

Inflammasomes, innate immunity components, are macromolecules originating from inflammatory 

stimuli. Upon recognition of PAMPs and DAMPs, inflammasomes are activated within immune cells. 

The best-described inflammasome is the NOD-like receptor family containing pyrin domain 3 (NLRP3), 

which functions in innate immunity and mediates pathological conditions such as chronic inflammatory 

diseases [4,5]. Therefore, NLRP3 is an important target of inflammation, and recognizing its 

mechanisms is essential. 

Among the compounds already reported anti-inflammatory activity are flavonoids, a class of 

secondary plant metabolites. Several mechanisms have been demonstrated for anti-inflammatory 

activity, such as inhibiting the enzyme cyclooxygenase-2 and lipoxygenases [6]. Furthermore, some 

flavonoids regulate the transcriptional expression of pro-inflammatory enzymes, such as inducible nitric 

oxide synthase, and pro-inflammatory cytokines, such as IL-1 and tumor necrosis factor-alpha (TNF-α). 

Transcriptional factors are also influenced by flavonoids, such as nuclear factor-κB (NF-κB) [7]. 

It is known that some flavonoids control the assembly of the NLRP3 inflammasome. Apigenin has 

in vitro activity preventing the oligomerization of NLRP3 [8,9], while quercetin, luteolin, and apigenin 

act to suppress NLRP3 and caspase-1 activation in human umbilical vein endothelial cells, and in vivo, 

with rat and mouse models [10-12]. Thus, it should be noted that flavonoids influence the NLRP3 

inflammasome pathway. 

Computer-aided drug design (CADD) is helpful because it is fast and inexpensive, combining several 

computational tools to identify and develop a lead compound. Molecular docking is the most used 

method, with which the binding mode of a compound to the target is obtained. In addition, Molecular 

Dynamics (MD) simulations provide the most accurate pose of the drug-target complex. CADD can be 

used to discover anti-inflammatory lead compounds [13,14]. 

Here, we identified flavonoids with the potential against NLRP3 through molecular docking for 

virtual screening of 100 known compounds identified as flavonoids, with subsequent analysis of MD 

simulation and MM/PBSA calculations. Therefore, Poinsettifollin A was the most promising candidate, 

highlighting it as a potential lead for developing novel anti-inflammatory drugs targeting NLRP3. 
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2. Material and Methods  

 

2.1 Target and Ligand Selection  

 

100 flavonoids were selected from the ZINC20 [15] database and others from the database published by 

Jiménez-Avalos and collaborators [16] (Supplementary Material). Conformational analysis of all ligands 

was performed using MarvinSketch® software. The lowest energy conformer obtained out of 10 had its 

conformation further refined by semi-empirical quantum mechanical energy minimization through 

Austin Model 1 (AM1) in ArgusLab® [17] software. At the same time, The structure of NLRP3 was 

obtained through a search on the UniProt website (www.uniprot.org) [18], obtained from the Research 

Collaboratory for Structural Bioinformatics Protein Data Bank database (RCSB.org) [19], under the code 

7ALV [20].  

 

2.2 Virtual screening protocol validation 

 

Afterward, the method for virtual screening using molecular docking in the chosen structure was 

validated using GOLD® software [21]. All hydrogens were added, the co-crystallized ligand was 

removed, and redocking was performed in the four scoring functions (ChemPLP, GoldScore, 

ChemScore, and ASP) (Supplementary Material). This led to the lowest RMSD value of 0.549 Å 

obtained by the ChemScore function, chosen for docking assays. In addition, the Fit score value of 33.70 

for the best pose was used as a starting point to select the best inhibitors for the MD simulations.  

 

2.3 Molecular Dynamics Simulations 

 

The best complexes after molecular docking were used Molecular Dynamics (MD) simulation with 

web service SwissParam [22-24] (www.swissparam.ch), UCSF Chimera® software [25], and 

GROMACS® software [26]. Hydrogens and charges were applied to the protein using the DockPrep tool 

in UCSF Chimera®. In GROMACS®, the CHARMM36 force field was used, and topology was generated 

in a triclinic box of 1.0 nanometers using H2O as solvent through the TIP3P solvation method Na+ and 

Cl- (0.15 M). At the same time, ligand topologies were obtained with SwissParam. Employing 

GROMACS®, energy minimization for all systems was reached via the steepest descent algorithm in 

under 1500 steps and balances for a constant number of particles, volume, and temperature (NVT) as 

well as a constant number of particles, pressure, and temperature (NPT) were achieved at the temperature 

of 300K after a simulation of 10 nanoseconds (ns). Next, with the system assembled, the simulation was 

performed in 100 ns. Topology and trajectory files were retrieved after each simulation. Graphs for root 

mean square fluctuation (RMSF) for each atom, root mean square deviation (RMSD), radius of gyration 

(Rg), solvent-accessible surface area (SASA), and H-bonds were generated and plotted using 

GROMACS® and Grace® software, respectively, for comparison and analysis of data. 

2.4 Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) calculations 

 

To further detail the quality of binding for each ligand using estimating binding energy to their 

targets, Molecular Mechanics/Poisson- Boltzmann Surface Area (MM-PBSA) calculations combine 

http://www.swissparam.ch/
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molecular mechanics (MM), which models the molecular interactions using force fields, with the 

Poisson-Boltzmann (PB) equation and solvent-accessible surface area (SASA) information [27]. In this 

study, these calculations were performed using the gmx_MMPBSA tool [28], an adaptation of the 

MMPBSA.py script [29], based on the trajectory files obtained after the previously described 100 ns, 

selecting 101 frames in intervals of 100 frames across each complex’s trajectory. These frames are then 

used as trajectory snapshots to calculate binding free energies for the ligand and receptor separately and 

subsequently for the entire complex. A mean value throughout the simulation is obtained to evaluate a 

ligand’s binding performance [29]. 

 

2.5 Literature review of chosen compounds after screening.  

 

Furthermore, a brief review of the recent literature was performed, seeking evidence of anti-

inflammatory activity for the higher-scoring compounds in molecular docking. This procedure was made 

using “flavonoids”, “anti-inflammatory,” and/or “inflammatory,” as well as their common names as 

keywords, on the web collection of Web of Science, PubMed, and ScienceDirect.  

 

3. Results and Discussion 

 

3.1 Virtual screening 

 

As described previously, the 100 flavonoids obtained previously were docked into the assigned 

NLRP3 structure. The following table describes data obtained for the two best-performing ligands with 

GOLD® and BIOVIA Discovery Studio® software [30], including RMSD values, fitness score values, 

and ligand-target interactions identified in the cavity.  

Hence, the two compounds with the highest fitness score values, Dorsmanin C and Poinsettifolin A 

(Table 1), were chosen to proceed for further analysis. Both overcame the score assigned for the original 

inhibitor, satisfying criteria previously defined in this method for predicted biological activity. All other 

ligands failed to reach values near the obtained for both selected compounds and thus were not 

considered relevant for analysis in this study. 

It can be observed that both Dorsmanin C and Poinsettifolin A bind to critical residues for activity, 

including Arg351, Glu527, and Arg578, predicting binding similar to the one described for NP3-146 and 

providing evidence to these compound’s NLRP3 inhibiting capabilities. However, it is worth noting that 

Poinsettifolin A makes a hydrogen bond with Arg578 while Dorsmanin C does not. 
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Table 1. Fitscore values and ligand-target interactions for both compounds.  

COMPOUND FITSCORE  INTERACTIONS 

Dorsmanin C 40.35 

H-BOND PI-CATION PI-SIGMA PI-PI T-SHAPED 
ALKYL / PI-

ALKYL 
VDW 

Tyr443, Ala228, 

Asp662, Tyr632 
Arg578 Ile411 Tyr632 

Val414, Ala227, 

Arg351, Pro352, 

Val353, Ile574 

Met408, Met661, Thr439, Thr659, Thr524, 

Leu355, Gln624, Ile623, Ser626, Phe410, Phe575, 

Leu413, Leu628, Glu629, Gly229, Ile417 

Poinsettifolin A 38.92 

Asp662, Tyr632, 

Arg578, Ala228, 

Tyr443 

Arg578 Ile411 Tyr632 
Pro352, Leu628, 

Val353, Ala227 

Arg351, Met408, Met661, Thr439, Thr659, 

Thr524, Phe410, Phe575, Ser658, Ser626, Leu413, 

Gly229, Gln225, Gln624, Glu369, Glu629, Ile574, 

Val414 
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3.2 Molecular Dynamics Simulation Analysis 

 

The analysis of plotted parameters previously established for the protein-ligand complexes yielded 

notable trends. Regarding RMSD variation over time-related to complex stability (Figure 1), NLRP3 

bound to Poinsettifolin A exhibited the lowest values, reaching stability at around 2 Å. It is then followed 

by itself bound to NP3-146, reaching stability at around 2.5 Å, the unbound protein, stabilizing at around 

3 Å albeit destabilizing after 70 ns, and lastly, itself bound to Dorsmanin C, heavily destabilizing near 

40 ns and displaying terrible performance. On the other hand, the ligand stability measured as RMSD 

variation over time (Figure 2) showed NP3-146 ranking highest, stabilizing at 0.5 Å, followed by 

Poinsettifolin A, stabilizing at nearly 2 Å and Dorsmanin C, not quite reaching stability with values 

between 1 and 3 Å.  

In addition, in the RMSF per atom (Figure 3), a close trend of behavior was followed by complexes 

of NLRP3 with Poinsettifolin A, with NP3-146, and the unbound protein itself. Yet, Dorsmanin C could 

not follow the same performance as its’ complex reached higher levels of fluctuation. 

The stability presented by Rg data (Figure 4) had NLRP3 in complex with Poinsettifolin A as the 

most stable, stabilized at around 2.35 Å, over NLRP3 in complex with NP3-146, reaching stability near 

2.4 Å at 60 ns, over the unbound protein, stabilizing near 2.4 Å at 20 ns, and finally over NLRP3 in 

complex with Dorsmanin C, heavily destabilizing after 40 ns as seen previously in complex RMSD 

analysis.  

The number of H-bonds formed between ligands and NLRP3 across the simulations varied across 

complexes, with NP3-146 having the highest number, forming between 1 and 8 bonds throughout the 

simulation (Figure 5), followed by Poinsettifolin A, with 0 to 4 bonds formed over time (Figure 6), and 

Dorsmanin C which could not form more than 3 bonds at best (Figure 7).  

Finally, the SASA plot (Figure 8) ranked highest for Poinsettifolin A, staying near 240 nm² until 45 

ns and reaching the lowest graph values after that, followed by NP3-146 and Dorsmanin C, which 

abnormally did not track any more values after 25. These findings offer valuable insights into the 

analyzed protein-ligand complexes' relative stabilities and structural characteristics. 

 

 

Figure 1. RMSD plot for free protein (black) and in complex with NP3-146 (red), Dorsmanin C 

(green), and Poinsettifolin A (blue). 
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Figure 2. Ligand RMSD for NP3-146 (black), Dorsmanin C (red), and Poinsettifolin A (green). 

 

 

Figure 3. RMSF for each atom for the free protein (black) and in complex with NP3-146 (red), 

Dorsmanin C (green), and Poinsettifolin A (blue). 

 

 

Figure 4. Rg plot for the free protein (black) and in complex with NP3-146 (red), Dorsmanin C 

(green), and Poinsettifolin A (blue). 
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Figure 5. H-bonds plots for NP3-146. 

 

 

Figure 6. H-bonds plots for Dorsmanin C. 

 

 

Figure 7. H-bond plot for Poinsettifolin A. 
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Figure 8. SASA plot for the protein complexed with NP3-146 (black), Dorsmanin C (red), and 

Poinsettifolin A (green). 

 

3.3 MM/PBSA calculation  

 

It is evident that none of the screened compounds managed to overcome NP3-146 in binding affinity, 

as their total average free binding energy values are well over -46.23 kcal/mol (Table 2). Despite this 

fact, Poinsettifolin A expectedly surpasses Dorsmanin C, maintaining its higher stability trend 

throughout all computational studies. 

 

Table 2. MM/PBSA calculation results for each compound studied in MD analysis. 

Compound Binding Free Energy (kcal/mol) 

Poinsettifolin A -23.0 ± 6.34 

Dorsmanin C -16.97 ± 6.01 

NP3-146 -46.23 ± 5.09 

 

3.4 Literature review 

 

Interestingly, the search yielded no results when inflammation-related terms were applied. Yet, when 

phytochemistry terms were applied, 8 articles were found about the discovery, synthesis, and 

characterization of Poinsettifolin A and Dorsmanin C, some showing other biological activities such as 

antiproliferative, antioxidant, and antimicrobial. 

From what evidence could be gathered, it was found that Escobar and collaborators accomplished 

the first total synthesis of Poinsettifolin A, starting from commercially available materials, and biological 

characterization showed that it seems to be essentially non-toxic to mammalian cells [31]. Thereby, 

Poinsettifolin A is a promising anti-inflammatory agent of high novelty to be explored in vivo and in 

vitro assays, as evidence about its’ anti-inflammatory activity is demonstrably sparse. 

 

4. Conclusion 

 

The investigation yielded noteworthy results, indicating that Dorsmanin C and Poinsettifolin A 

emerged as the top-performing compounds among all 100 screened flavonoids. Both compounds not 
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only met the screening criteria established during the validation of the docking method but also exhibited 

predictable binding to the crucial residue Arg578, which is essential for activity.  

In the MD simulations, Poinsettifolin A demonstrated a more stable binding to NLRP3 than DC and 

NP3-146, a recognized inhibitor of this receptor. This stability was evidenced by lower RMSD, RMSF, 

Rg, and SASA values evaluated for their complex.  

Despite showing a relative underperformance in terms of hydrogen bonds and ligand stability 

compared to NP3-146, Poinsettifolin A still displayed a superior affinity to the target NLRP3 compared 

to Dorsmanin C. Furthermore, MM/PBSA calculations revealed a lower binding energy for NP3-146 

compared to Poinsettifolin A and Dorsmanin C, emphasizing NP3-146's efficacy as an established potent 

inhibitor. However, Poinsettifolin A's overall superior target affinity over Dorsmanin C places it as the 

most promising candidate between the two.  

Added to a perceived lack of yet published evidence about Poinsettifolin A’s anti-inflammatory 

activity, it could be inferred that this compound has potential as a lead compound for developing novel 

anti-inflammatory drugs, as suggested by in silico experiments detailed earlier. Follow-up assays of 

biological activity in vitro and in vivo are required to confirm this hypothesis. 

 

ACKNOWLEDGMENTS 

 

All authors would like to express their gratitude for the support received from the State University 

of Paraiba’s Graduate Studies and Research Incentive Program (PROPESQ-UEPB/Brazil), the 

Coordination for the Improvement of Higher Education Personnel (CAPES/Brazil), the National Council 

for Scientific and Technological Development (CNPq/Brazil), and the National Center for High-

Performance Computing in São Paulo (CENAPAD-SP), as part of the UNICAMP/FINEP - MCTI 

project, for making their resources available to the development of this work. 

 

DECLARATION OF INTEREST 

All authors declare no pertinent affiliations or financial associations with any organizations or 

entities in financial conflicts of interest related to the subjects discussed in this manuscript, encompassing 

employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents 

received or pending, or royalties. 

 

REFERENCES 

 

1. Netea, M. G.; Balkwill, F.; Chonchol, M.; Cominelli, F.; Donath, M. Y.; Giamarellos-Bourboulis, 

E. J.; Golenbock, D.; Gresnigt, M. S.; Heneka, M. T.; Hoffman, H. M.; Hotchkiss, R.; Joosten, L. 

A. B.; Kastner, D. L.; Korte, M.; Latz, E.; Libby, P.; Mandrup-Poulsen, T.; Mantovani, A.; Mills, 

K. H. G.; Nowak, K. L.; O’Neill, L. A.; Pickkers, P.; van der Poll, T.; Ridker, P. M.; Schalkwijk, J.; 

Schwartz, D. A.; Siegmund, B.; Steer, C. J.; Tilg, H.; van der Meer, J. W. M.; van de Veerdonk, F. 

L.; Dinarello, C. A. A Guiding Map for Inflammation. Nat. Immunol. 2017, 18 (8), 826–831. 

https://doi.org/10.1038/ni.3790. 

2. Weavers, H.; Martin, P. The Cell Biology of Inflammation: From Common Traits to Remarkable 

Immunological Adaptations. J. Cell Biol. 2020, 219 (7). https://doi.org/10.1083/jcb.202004003. 

https://doi.org/10.1038/ni.3790.
https://doi.org/10.1083/jcb.202004003.


MOL2NET, 2023, 9, ISSN: 2624-5078                                                                                       

https://mol2net-09.sciforum.net/          

 

3. Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140 (6), 805–

820. https://doi.org/10.1016/j.cell.2010.01.022. 

4. Doyle, S.; Ozaki, E.; Campbell, M. Targeting the NLRP3 Inflammasome in Chronic Inflammatory 

Diseases: Current Perspectives. J. Inflamm. Res. 2015, 15. https://doi.org/10.2147/JIR.S51250. 

5. Choulaki, C.; Papadaki, G.; Repa, A.; Kampouraki, E.; Kambas, K.; Ritis, K.; Bertsias, G.; 

Boumpas, D. T.; Sidiropoulos, P. Enhanced Activity of NLRP3 Inflammasome in Peripheral Blood 

Cells of Patients with Active Rheumatoid Arthritis. Arthritis Res. Ther. 2015, 17 (1), 257. 

https://doi.org/10.1186/s13075-015-0775-2. 

6. Chi, Y. S.; Jong, H. G.; Son, K. H.; Chang, H. W.; Kang, S. S.; Kim, H. P. Effects of Naturally 

Occurring Prenylated Flavonoids on Enzymes Metabolizing Arachidonic Acid: Cyclooxygenases 

and Lipoxygenases11Abbreviations: AA, Arachidonic Acid; COX, Cyclooxygenase; LOX, 

Lipoxygenase; PG, Prostaglandin; TX, Thromboxane; HETE, Hydrox. Biochem. Pharmacol. 2001, 

62 (9), 1185–1191. https://doi.org/10.1016/S0006-2952(01)00773-0. 

7. Kim, H. P.; Son, K. H.; Chang, H. W.; Kang, S. S. Anti-Inflammatory Plant Flavonoids and Cellular 

Action Mechanisms. J. Pharmacol. Sci. 2004, 96 (3), 229–245. 

https://doi.org/10.1254/jphs.CRJ04003X. 

8. Honda, H.; Nagai, Y.; Matsunaga, T.; Okamoto, N.; Watanabe, Y.; Tsuneyama, K.; Hayashi, H.; 

Fujii, I.; Ikutani, M.; Hirai, Y.; Muraguchi, A.; Takatsu, K. Isoliquiritigenin Is a Potent Inhibitor of 

NLRP3 Inflammasome Activation and Diet-Induced Adipose Tissue Inflammation. J. Leukoc. Biol. 

2014, 96 (6), 1087–1100. https://doi.org/10.1189/jlb.3A0114-005RR. 

9. Zhang, X.; Wang, G.; Gurley, E. C.; Zhou, H. Flavonoid Apigenin Inhibits Lipopolysaccharide-

Induced Inflammatory Response through Multiple Mechanisms in Macrophages. PLoS One 2014, 

9 (9), e107072. https://doi.org/10.1371/journal.pone.0107072. 

10. Márquez-Flores, Y. K.; Villegas, I.; Cárdeno, A.; Rosillo, M. Á.; Alarcón-de-la-Lastra, C. Apigenin 

Supplementation Protects the Development of Dextran Sulfate Sodium-Induced Murine 

Experimental Colitis by Inhibiting Canonical and Non-Canonical Inflammasome Signaling 

Pathways. J. Nutr. Biochem. 2016, 30, 143–152. https://doi.org/10.1016/j.jnutbio.2015.12.002. 

11. Wang, C.; Pan, Y.; Zhang, Q.-Y.; Wang, F.-M.; Kong, L.-D. Quercetin and Allopurinol Ameliorate 

Kidney Injury in STZ-Treated Rats with Regulation of Renal NLRP3 Inflammasome Activation and 

Lipid Accumulation. PLoS One 2012, 7 (6), e38285. https://doi.org/10.1371/journal.pone.0038285. 

12. Wu, J.; Xu, X.; Li, Y.; Kou, J.; Huang, F.; Liu, B.; Liu, K. Quercetin, Luteolin and Epigallocatechin 

Gallate Alleviate TXNIP and NLRP3-Mediated Inflammation and Apoptosis with Regulation of 

AMPK in Endothelial Cells. Eur. J. Pharmacol. 2014, 745, 59–68. 

https://doi.org/10.1016/j.ejphar.2014.09.046. 

13. dos Santos Nascimento, I. J.; da Silva-Júnior, E. F. TNF-α Inhibitors from Natural Compounds: An 

Overview, CADD Approaches, and Their Exploration for Anti-Inflammatory Agents. Comb. Chem. 

High Throughput Screen. 2021, 24. https://doi.org/10.2174/1386207324666210715165943. 

14. Nascimento, I. J. dos S.; de Aquino, T. M.; da Silva-Júnior, E. F. The New Era of Drug Discovery: 

The Power of Computer-Aided Drug Design (CADD). Lett. Drug Des. Discov. 2022, 19 (11), 951–

955. https://doi.org/10.2174/1570180819666220405225817. 

15. Irwin, J. J.; Tang, K. G.; Young, J.; Dandarchuluun, C.; Wong, B. R.; Khurelbaatar, M.; Moroz, Y. 

S.; Mayfield, J.; Sayle, R. A. ZINC20 - A Free Ultralarge-Scale Chemical Database for Ligand 

Discovery. J Chem Inf Model 2020, 60 (12), 6065–6073. https://doi.org/10.1021/acs.jcim.0c00675. 

https://doi.org/10.1016/j.cell.2010.01.022.
https://doi.org/10.2147/JIR.S51250.
https://doi.org/10.1186/s13075-015-0775-2.
https://doi.org/10.1016/S0006-2952(01)00773-0.
https://doi.org/10.1254/jphs.CRJ04003X.
https://doi.org/10.1189/jlb.3A0114-005RR.
https://doi.org/10.1371/journal.pone.0107072.
https://doi.org/10.1016/j.jnutbio.2015.12.002.
https://doi.org/10.1371/journal.pone.0038285.
https://doi.org/10.1016/j.ejphar.2014.09.046.
https://doi.org/10.2174/1386207324666210715165943.
https://doi.org/10.2174/1570180819666220405225817.
https://doi.org/10.1021/acs.jcim.0c00675.


MOL2NET, 2023, 9, ISSN: 2624-5078                                                                                       

https://mol2net-09.sciforum.net/          

 

16. Jiménez-Avalos, G.; Vargas-Ruiz, A. P.; Delgado-Pease, N. E.; Olivos-Ramirez, G. E.; Sheen, P.; 

Fernández-Díaz, M.; Quiliano, M.; Zimic, M.; Agurto-Arteaga, A.; Antiparra, R.; Ardiles-Reyes, 

M.; Calderon, K.; Cauna-Orocollo, Y.; de Grecia Cauti-Mendoza, M.; Chipana-Flores, N.; Choque-

Guevara, R.; Chunga-Girón, X.; Criollo-Orozco, M.; De La Cruz, L.; Delgado-Ccancce, E.; Elugo-

Guevara, C.; Fernández-Sanchez, M.; Guevara-Sarmiento, L.; Gutiérrez, K.; Heredia-Almeyda, O.; 

Huaccachi-Gonzalez, E.; Huerta-Roque, P.; Icochea, E.; Isasi-Rivas, G.; Juscamaita-Bartra, R. A.; 

Licla-Inca, A.; Montalvan, A.; Montesinos-Millan, R.; Núñez-Fernández, D.; Ochoa-Ortiz, A.; 

Páucar-Montoro, E.; Pauyac, K.; Perez-Martinez, J. L.; Perez-M, N.; Poma-Acevedo, A.; Quiñones-

Garcia, S.; Ramirez-Ortiz, I.; Ramos-Sono, D.; Rios-Angulo, A. A.; Rios-Matos, D.; Rojas-Neyra, 

A.; Romero, Y. K.; Salguedo-Bohorquez, M. I.; Sernaque-Aguilar, Y.; Soto, L. F.; Tataje-Lavanda, 

L.; Ticona, J.; Vallejos-Sánchez, K.; Villanueva-Pérez, D.; Ygnacio-Aguirre, F. Comprehensive 

Virtual Screening of 4.8 k Flavonoids Reveals Novel Insights into Allosteric Inhibition of SARS-

CoV-2 MPRO. Sci Rep 2021, 11 (1), 1–19. https://doi.org/10.1038/s41598-021-94951-6. 

17. Thompson, M.A. (2004) Molecular Docking Using ArgusLab, an Efficient Shape-Based Search 

Algorithm and the a Score Scoring Function. ACS Meeting, Philadelphia. 

18. Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E. H.; 

Britto, R.; Bye-A-Jee, H.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.; Fan, J.; Garmiri, P.; da 

Costa Gonzales, L. J.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, 

V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, 

A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, 

S.; Raposo, P.; Rice, D. L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; 

Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A. J.; Aimo, L.; 

Argoud-Puy, G.; Auchincloss, A. H.; Axelsen, K. B.; Bansal, P.; Baratin, D.; Batista Neto, T. M.; 

Blatter, M.-C.; Bolleman, J. T.; Boutet, E.; Breuza, L.; Gil, B. C.; Casals-Casas, C.; Echioukh, K. 

C.; Coudert, E.; Cuche, B.; de Castro, E.; Estreicher, A.; Famiglietti, M. L.; Feuermann, M.; 

Gasteiger, E.; Gaudet, P.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz, N.; Hulo, C.; Hyka-Nouspikel, 

N.; Jungo, F.; Kerhornou, A.; Le Mercier, P.; Lieberherr, D.; Masson, P.; Morgat, A.; 

Muthukrishnan, V.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Poux, S.; Pozzato, M.; Pruess, 

M.; Redaschi, N.; Rivoire, C.; Sigrist, C. J. A.; Sonesson, K.; Sundaram, S.; Wu, C. H.; Arighi, C. 

N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D. A.; Ross, K.; 

Vinayaka, C. R.; Wang, Q.; Wang, Y.; Zhang, J. UniProt: The Universal Protein Knowledgebase in 

2023. Nucleic Acids Res 2023, 51 (D1), D523–D531. https://doi.org/10.1093/nar/gkac1052. 

19. Berman, H. M. The Protein Data Bank. Nucleic Acids Res 2000, 28 (1), 235–242. 

https://doi.org/10.1093/nar/28.1.235. 

20. Dekker, C.; Mattes, H.; Wright, M.; Boettcher, A.; Hinniger, A.; Hughes, N.; Kapps-Fouthier, S.; 

Eder, J.; Erbel, P.; Stiefl, N.; Mackay, A.; Farady, C. J. Crystal Structure of NLRP3 NACHT 

Domain With an Inhibitor Defines Mechanism of Inflammasome Inhibition. J Mol Biol 2021, 433 

(24). https://doi.org/10.1016/j.jmb.2021.167309. 

21. Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Improved Protein-

Ligand Docking Using GOLD. Proteins: Structure, Function, and Bioinformatics 2003, 52 (4), 609–

623. https://doi.org/10.1002/prot.10465. 

https://doi.org/10.1038/s41598-021-94951-6.
https://doi.org/10.1093/nar/gkac1052.
https://doi.org/10.1093/nar/28.1.235.
https://doi.org/10.1016/j.jmb.2021.167309.
https://doi.org/10.1002/prot.10465.


MOL2NET, 2023, 9, ISSN: 2624-5078                                                                                       

https://mol2net-09.sciforum.net/          

 

22. Yesselman, J. D.; Price, D. J.; Knight, J. L.; Brooks, C. L. MATCH: An Atom‐typing Toolset for 

Molecular Mechanics Force Fields. J Comput Chem 2012, 33 (2), 189–202. 

https://doi.org/10.1002/jcc.21963. 

23. Zoete, V.; Cuendet, M. A.; Grosdidier, A.; Michielin, O. SwissParam: A Fast Force Field Generation 

Tool for Small Organic Molecules. J Comput Chem 2011, 32 (11), 2359–2368. 

https://doi.org/10.1002/jcc.21816. 

24. Bugnon, M.; Goullieux, M.; Röhrig, U. F.; Perez, M. A. S.; Daina, A.; Michielin, O.; Zoete, V. 

SwissParam 2023: A Modern Web-Based Tool for Efficient Small Molecule Parametrization. J 

Chem Inf Model 2023, 63 (21), 6469–6475. https://doi.org/10.1021/acs.jcim.3c01053. 

25. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, 

T. E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J Comput 

Chem 2004, 25 (13), 1605–1612. https://doi.org/10.1002/jcc.20084. 

26. Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: 

High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to 

Supercomputers. SoftwareX 2015, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001. 

27. Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding 

Affinities. Expert Opinion on Drug Discovery. Informa Healthcare May 1, 2015, pp 449–461. 

https://doi.org/10.1517/17460441.2015.1032936. 

28. Valdés-Tresanco, M. S.; Valdés-Tresanco, M. E.; Valiente, P. A.; Moreno, E. Gmx_MMPBSA: A 

New Tool to Perform End-State Free Energy Calculations with GROMACS. J Chem Theory 

Comput 2021, 17 (10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645. 

29. Miller, B. R.; McGee, T. D.; Swails, J. M.; Homeyer, N.; Gohlke, H.; Roitberg, A. E. MMPBSA.Py: 

An Efficient Program for End-State Free Energy Calculations. J Chem Theory Comput 2012, 8 (9), 

3314–3321. https://doi.org/10.1021/ct300418h. 

30. BIOVIA Dassault Systèmes. Discovery Studio Visualizer. BIOVIA, Dassault Systèmes: San Diego 

2023. 

31. Escobar, Z.; Solano, C.; Larsson, R.; Johansson, M.; Salamanca, E.; Gimenez, A.; Muñoz, E.; 

Sterner, O. Synthesis of Poinsettifolin A. Tetrahedron 2014, 70 (47), 9052–9056. 

https://doi.org/10.1016/j.tet.2014.10.021.  

 

 

https://doi.org/10.1002/jcc.21963.
https://doi.org/10.1002/jcc.21816.
https://doi.org/10.1021/acs.jcim.3c01053.
https://doi.org/10.1002/jcc.20084.
https://doi.org/10.1016/j.softx.2015.06.001.
https://doi.org/10.1517/17460441.2015.1032936.
https://doi.org/10.1021/acs.jctc.1c00645.
https://doi.org/10.1021/ct300418h.
https://doi.org/10.1016/j.tet.2014.10.021.

