

Organic and Regenerative Farms are a Gold Mine for Potentially Novel Species of Soil Bacteria

Savanah Senn^{*1}, Bruce Nash², Ray A. Enke ³, Karen Barnard-Kubow ³, Arianna Bozzolo ⁴ Tony Deveyra ⁴, Robert Pelka ¹ Karu Smith ¹ Daila Melendez ⁵ Kelly Pangell ¹, Adrianna Bowerman ¹ Alexander Snyder ¹, Madison Blaney ¹ Jillian Ford ¹, Meika Best ¹ John Dolin ¹ Ariel Oliveau ¹ and Jeff Chean ¹ Fernando Garcia-Ibarra ¹ Tracey Spann ⁶

- ¹ Los Angeles Pierce College; pelkara@piercecollege.edu(R.P.); karu.dews.smith@gmail.com(K.S.); kellypangell@gmail.com(K.P.); bowermal9924@student.laccd.edu(A.B.); asnyder91335@gmail.com(A.S.); madiblaney@gmail.com(M.B.); jkupiheaford@gmail.com(J.F.); bestma3119@student.laccd.edu(M.B.); dolinjm7422@student.laccd.edu(J.D.); ariel.oliveau@gmail.com(A.O.); jeff.chean@groundworkcoffee.com(J.C.); ibarrafernando997@gmail.com(F.G.-I.)
- ² Cold Spring Harbor Laboratory; nash@chsl.edu
- ³ James Madison University; enkera@jmu.edu(R.A.E); barnarkb@jmu.edu(K.B.-K.)
- ⁴ Rodale Organic Institute; arianna.bozzolo@rodaleinstitute.org(A.B.); Tony.deveyra@gmail.com(T.D.)
- ⁵ Oregon State University; dailadwm@gmail.com
- California State University, Northridge; tracey.spann.795@my.csun.edu
- Correspondence: stclais@piercecollege.edu

Plot Map- Cover Crop Trial

Plot 1 Sorghum-Peas 200	Plot 10 Sorghum-Peas 100	Plot 11 buckwheat-peas	Plot 20 Plastic						ちん ちょうう しょうちょう
Plot 2 Sorghum-Peas 100	Piot 9 buckwheat-peas	Plot 12 Sorghum-Peas 200	Plot 19 Perennial Clov	er					4-1-1-1
Piet 3 buckwheat-peas	Plot 8 Perennial Clover	Plot 13 Plastic	Plot 18 buckwheat-p	eas					
Plot 4 Plastic	Sorghum-Peas 200	Plot 14 Perennial Clover	Plot 17 Sorghum-Pe 100	as					
Plot 5 Perennial Clover	Plot 6 Plastic	Plot 15 Sorghum-Peas 100	Plot 16 Sorghum-Pe 200	as					
and the second second	但是的第二个时间的正式	A MARINE STREET			Lin Letters			Provide Chiefe	
Plot 31 Crimson Clover	Plot 32 White Clover	Plot 33 Plastic	Plot 34 Kurapia	Plot 35 Buckwhe at		Plot 36 Crimson Clover	Plot 37 Plastic	Plot 38 Kurapia	W
Plot 50 White Clover	Plot 49 Kurapia	Plot 48 Buckwheat	Plot 47 Plastic	Plot 46 Crimson Clover		Plot 45 White Clover	Plot 44 Kurapia	Plot 43 Buckwheat	

Artichoke plots were sampled for soil 3 months after the cover crops were seeded.

Methods

 Between Fall 2021- Spring 2023 soil metabarcoding samples and soil bacterial isolates were collected from Los Angeles Pierce College farm and local farms, and sequenced on Illumina MiSeq and Sanger platforms.

Materials and Methods

 Soil physical and chemical properties from the sites were also measured including pH, EC,
 TDS, organic matter by dry combustion, texture
 by touch, and nitrogen,
 phosphorus and potassium by spectrophotometry.

Materials and methods

 Soil physical and chemical properties data were compared with reference measurements from the USDA NRCS soil surveys.

 Comparisons between fields were carried out in the R stats package.

Barcoding and Metabarcoding Methods

- The cultivated bacteria were isolated on Nutrient Agar, Luria Broth Agar, or ISP-6 medium.
- Barcoding isolate DNA was extracted using 10% chelex solution heated for 10 minutes at 100 C.
- Quality control was achieved through electrophoresis using the E-gel system.

- DNA extraction from soil samples used the Qiagen DNEasy Power Soil Kit.
- Quality control was achieved with spectrophotometry using the ThermoFisher MultiSkan SkyHigh Microplate Spectrophotometer.
- Barcoding data analysis was performed on the DNA Subway Blue Line and EZBioCloud; metabarcoding data analysis was carried out using the DNA Subway Purple Line.

Results- Soil Science

Preliminary data showed that the conditions between the fields differed significantly in values for organic matter, N, K, and pH (p<0.05); this offered a diverse panel of substrates for discovery.

Moisture 0.220.20.000.000.050.30.0 0,010,090,09 OM 0.22 0.20.29pH 0.2 0.07 0.210.2 EC 0.060.090.21 0.380.0 TDS 0.060.090.21 0.380.0 N 0.050,230,330,380,38 0.150.28 p 0.3 0.29 0.050 0 0.0 10 1 0.1K 0.050.190.060.730.73 0.280.1CFUC 0.370.080 320,510,510,320,220,2 CFUD 0.050.19.230.220.220.1 0.130.1 CFUE 0.35-0.2 0.020.100.100.220.380.0 de

It is apparent that Potassium concentrations are making the highest contribution to EC and TDS, based on the Pearson correlation matrix. It also appears that the CFU concentrations for the 10⁻⁵ dilution were mildly associated with higher N and P levels.

Organic Matter (OM)

According to the results of the nonparametric Kruskal-Wallis rank sum test, Field was associated with OM (p=0.02).

```
22
## Pairwise comparisons using Wilcoxon rank sum exact test
22
## data: DM and Field
22
           Arboretum Marquis _C Marquis & Marquis B N side Rodale S Side
22
## Marquis C 0.37
                     -
                               100
                                        100
                                                 1.00
                                                       -
                                                              (m. )
                              ÷.
## Marquis A 0.74 0.29
                                                       ÷.,
                                                              100
                                       Same
                    0.23
                             0.74
## Marquis B 0.23
                                                1.14
                                                       -
                                                              100
## N_side 0.23
## Rodale 0.58
## S_Side 0.18
                     0.18
                             0.35
                                       0.78
                                                0.29
                             0.85
                                       1.00
                                                0.98 -
                                                              100
                    0.18
                             0.29
                                       0.28
                                                0.58 0.85 -
## Vineyard 0.72
                    0.29
                              1.00
                                       0.58
                                                0.30 1.00 0.35
22
## P value adjustment method: BH
```

Nitrogen (N)

According to the results of the nonparametric Kruskal-Wallis rank sum test, Field was associated with N (p=0.02).

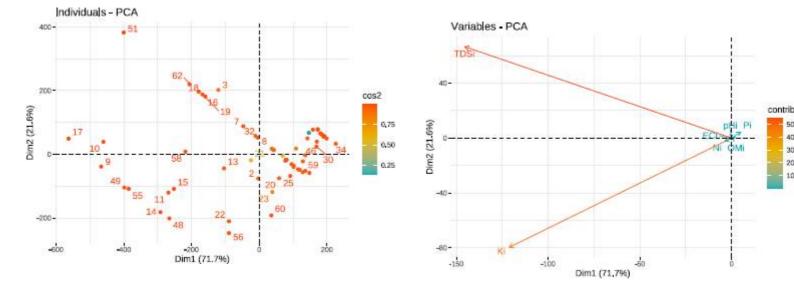
```
## Pairwise comparisons using Wilcoxon rank sum exact test
 ##
 ## data: N and Field
 22
                                      Arboretum Marquis C Marquis A Marquis B N side Rodale S Side
 22
 ## Marquis C 0.70
                                                                                                                                                                                                                                    20
                                                                            1.1
## Marquis_A 0.70 0.12
                                                                                                               -
                                                                                                                                                     -
                                                                                                                                                                                       -
                                                                                                                                                                                                                                     -

        ## Marquis_B
        0.50
        0.70
        0.70
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -
        -

                                                                                                                                                                                                                                     ÷.,
                                                                                                                                                                                                                                     201
                                                                                                                                                                                   0.80 0.70 -
 ## Vineyard 0.20
                                                                           0.20
                                                                                                               0.12 0.70
                                                                                                                                                                                  0.12 0.28 0.19
 22
 ## P value adjustment method: HH
```

Potassium (K)

According to the results of the nonparametric Kruskal-Wallis rank sum test, Field was associated with K (p=3.24*10^-5).


```
22
## Pairwise comparisons using Wilcoxon rank sum exact test
2.2
## data: K and Field
22
22
           Arboretum Marquis C Marquis A Marquis B N side Rodale S Side
## Marquis _C 0.2333 -
## Marquis A 0.0975 0.1053
                              -
## Marquis_B 0.5091 0.5091
                            0.8969
                                      100
                                               1000
                                                     ## N side
           0.1063 0.0346 0.0099 0.2333 -
                                                     100
## Rodale
          0.1600 0.2333
                             1.0000 1.0000 0.0711 -
## 8 Side
           0.7333 0.5091
                                     0.6087 0.1053 0.2333 -
                            0.1600
## Vineyard 0.2333 0.2333 0.3742 1.0000 0.1063 0.5091 0.3294
22
```

pН

According to the results of the nonparametric Kruskal-Wallis rank sum test, Field was associated with pH (p=0.002).

```
**
  Pairwise comparisons using Wilcoxon rank sum test with continuity correction
22
22
## data: pH and Field
教教
22
            Arboretum Marquis C Marquis & Marquis B M side Rodale S Side
## Marquis C 1.000
                                 et i serie de
                                                     100
                                                           -
                                                                  ......
## Marquis A 0.093
                       1,000
## Marquis B 0.691
                      1.000
                                0.642
                                           100
## N side
            0.103
                       0.673
                                 0.651
                                           0.370
## Rodale
             0.103
                       0.123
                                0.063
                                           0.123
                                                     0.063 -
           0.138
## 8 Side
                     0.493
                                0.258
                                          0.210
                                                    0.493 0.119 -
## Vineyard 0.123
                                0.093
                                          0.143
                                                   0.063 0.123 0.103
                       1.000
業業
## P value adjustment method: BH
```

Principal Components Analysis

Results-Barcoding

 In spring 2021 and fall 2022, 137 bacterial isolates from Pierce College, Rodale Institute for Organic Agriculture in Camarillo, and Tulare, CA were screened; this investigation revealed up to 30 potentially novel species based on the partial 16S sequences.

• The soil samples from fall 2022 were taken from pasture, fallow, cover

crop, and hemp plantings.

• The purpose of the cover crop trial was to test replacement of plastic mulch with living mulch and cover crops in strawberry and artichoke production.

Sample Name 💌	Number 💌	Gel Number 💌	Lane 💌	Pass QC? 💌	Passed sequencing?	Concen sus sequence 💌	% Simi larity 💌	% Completene 👳 T
21-C1-ER	56	1	7	Yes	Yes	ANGACGCTGGCGGCNNG	86.63	51.5 F
21-C1B-ER	61	6	2	Yes	Yes	TGTCGGCAGCGTCAGATG	93.68	36.8 F
21-C2-ER	58	1	9	Yes	Yes	CCTACGGGGGGGCTGCAGT	91.16	31.4 8
21-C3-ER	57	1	8	Yes	Yes	CCTACGGGGGGGCTGCAGT	89.39	31.7 (
21-C3A-ER	59	1	10	Yes	Yes	TCGGCAGCGTCAGATGTG	94.21	36.3 F
21-E1-ER	55	1	6	Yes	Yes	AATACGNTGGCACCTTGA	83.17	31.3 F
21-E1A-ER	60	1	11	Yes	Yes	CANTTOGTOGGCAGCGTC	93.53	38.8 9
38-D1-CW	49	13	10	Yes	Yes	TTTTGTATAAGGATAAACC	91.41	26.9 0
38-E1-CW	66	6	7	Yes	Yes	CAGTTTGTCGGCAGCGTC4	92.51	38.7 1
38-E3-CW	65	6	6	Yes	Yes	TTCGTCGGCAGCGTCAGA	93.06	39.6 1
4-D1-ms	75	8	6	Yes	Yes	TCGTNGGCAGCGTCAGAT	95.03	35 9
41-E1-GR	21	10	2	Yes	Yes	GTTGATNATGGCTCAGAA	95.86	57.3 (
43-E2-DY	19	4	10	Yes	Yes	GAGCCCGNGTCGCATTAG	95.94	37.6 L
47-D1-EV	46	13	7	Yes	Yes	ACGCTGGCGGCNNGCCTA	94.12	51.6 F
47-D1-SR	63	6	4	Yes	Yes	GTCGGCAGCGTCAGATGT	93.61	36.3 /
47-D2-SR	64	6	5	Yes	Yes	GTCGGCAGCGTCAGATGT	92.68	38 F
47-D3-AM2	88	11	9	Yes	Yes	AGAAGGCACCTTGACGGT	73.69	39.2 E
47-E1-SR	62	6	3	Yes	Yes	CCTACGGGGGGGCTGCA GT	89.95	31.3 8
ARB-C2-YK	72	8	3	Yes	Yes	CCTACGGGGGGGCTGCAGT	92.17	31.9 9
ARB-D1-MA	68	6	9	Yes	Yes	GTNGGCAGCGTCA GATGT	94.51	36.1 0
A RB-D1-YK	70	6	11	Yes	Yes	TTGTNGGCAGCGTCA GAT	94.57	36.9 L
ARB-D2-MA	67	6	8	Yes	Yes	GTCGGCAGCGTCAGATGT	92.95	36.2 E
A RB-D2-YK	71	8	2	Yes	Yes	GTCGGCAGCGTCAGATGT	93.9	38.8 L
A RB-E2-DB	14	4	5	Yes	Yes	CTTTTTGCGGCGGACGGG	85.93	44.3 F
Arb-e3-ma	69	6	10	Yes	Yes	TGTCGGCAGCGTCAGATG	94.57	36 1
D1-47-SR	24	10	5	Yes	Yes	CAGTAGAGTTTGATCATG	90.28	51.5 9
D2-21-AL	29	10	10	Yes	Yes	CTGGCGGCNTGCTNNNAC	92.76	49.3 M
D6-21-AL	27	10	8	Yes	Yes	TGACGCTGGCGGCNNGCT	87.32	45.3 N
P24-C1-AE	10	2	11	Yes	Yes	CTTGCTCCCGGGATTAGTO	94.06%	46.10% F
P24-E1-AE	9	2	10	Yes	Yes	TGACGCTGGCGGCGTGCT	95.05%	50.60% /

Barcoding- Example Potentially novel isolates from our study

JinMa-D5-SS Bacillus pur	milus ATCC 7061		% ID 92.94
Bacteria;Firi	micutes;Bacilli;Bacillales;Bacil-		
laceae;Bacill	lus		
JinMa-E6-SS Streptomyc	es montanus	NEAU-C15	1
	% ID 94.51 Bacteria;Actinobacteria;A	ctinomycetia;	Strep-
tomycetales	;Streptomycetac		
eae;Streptomyces			
JinMa-D6-MAR	Lysobacter antibioticus	ATCC	29479
	% ID 79.81 Bacteria;Proteobacteria;C	Gammaproteo	bacte-
ria;Lysobac	terales;Lysobact		

eraceae;Lysobacter

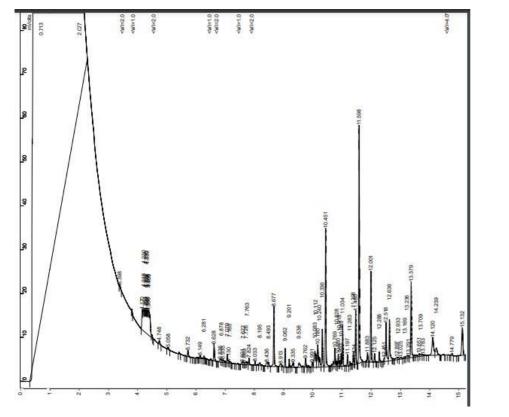
Results- Essential Oil effect on microbes

- Some of the more notable genera discovered from the isolates were *Lysobacter, Streptomyces,* and *Bacillus*, which include antibiotic producers.
- Some of the bacterial isolates were challenged with crude ethanolic extracts of tea tree and lemon balm. Percent transmittance was measured at 600 nm.
- The growth was similar between replicated treatments for

putative Bacillus mojavensis, Curvibacter lanceolatus, Streptomyces bobili.

• Both tea tree and lemon balm were effective at controlling *Bacillus pumilus* compared with the control, whereas putative

Pseudomonas segetis grew more when treated with either $H_3^{C} \rightarrow O_{CH_3}^{CH_3}$ on balm or tea tree extracts, and *Paracoccus marcusii*


grew more when treated with tea tree oil versus the control.

Eucalyptol

Caryophyllene

GC Preliminary Results: Lemon Balm

The GC Standard used was Eucalyptol (1,8-Cineole) and Caryophyllene Oxide (Cannabis Terpene Standard #2, Restek) with 2500 ug/mL

Chr om ato gra m of

L	e
n	10
n	
В	al
n	ı
C	ru
d	e
e	xtr
a	ct
(5	5.2
u	L/
n	nL
I	PA)

Lemo	n balm
is ex	pected
to	have
caryo	phylle
ne ox	ide but
does	not

contain

eucalyptol.

The main

peak is

believed to

be

Caryophylle

ne

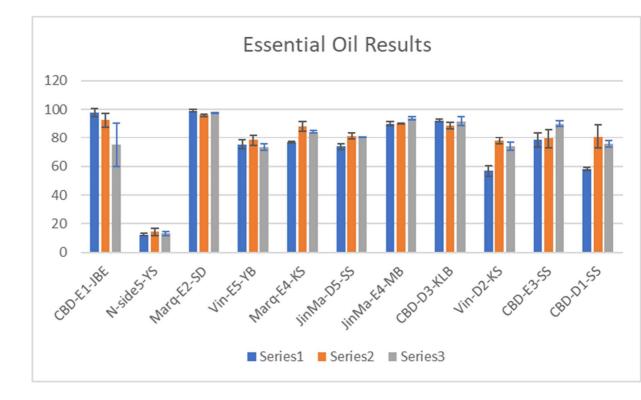
Further

studies will

report

percent

composition


of the main

terpene

components.

Essential Oil Testing Results

	Paracoccus marcusii	Badllus mojavensis	Curvibacter lance ol at us	Curvibacter lanceolatus	Unknown	Badllus pumilus	Streptomyces bobili	Curvibacter lanceolatus	Pseudom
	CBD-E1-J BE	N-side 5-YS	Marq-E2-SD	VIn-E5-YB	Marq-E4-KS	JinMa-D5-SS	JInMa-E4-MB	CBD-D3-KLB	VIn-D2-KS
с	97.93333333	12.43333333	99.06666667	75.26666667	76.93333333	73.98333333	90.16666667	92.4	1
Std. Error C	2.878850079	0.676592771	0.920748488	3.090487196	0.698410895	2.073912081	1.476858528	0.723417814	1
т	92.53333333	14.43333333	96.03333333	78.43333333	88.16666667	81.5	90.2	88.76666667	7
Std. Error T	4.838847429	2.611725696	0.876229295	3.725736318	3.235394532	2.163330765	0.37859389	2.503553031	L
L	75.23333333	13.1	97.83333333	73.5	84.46666667	80.6	93.9	91.8	3
Std. Error L	15.14521331	1.42243922	0.260341656	2.357965225	0.788106028	0.458257569	0.929157324	3.113411848	5

Discussion and Conclusion

- Additional work is needed to characterize the plant terpenes. Soil properties should be remeasured since the cover crop trial is now in year 2.
- More investigation into the taxonomic

composition and

predicted functions of the potentially novel soil bacteria is necessary.

• Further research will focus on identification of the main terpene

components of the plant extracts by gas chromatography.