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Abstract: Super-resolution (SR) is a well-established technique used to enhance the resolution of 

low-resolution images. In this paper, we introduce a novel approach for super-resolution of 

Sentinel-2 10m RGB images using higher-resolution Venus 5m RGB images. The proposed method 

takes advantage of a modified SRResNet network, integrates perceptual loss based on the VGG 

network, and incorporates a learning rate decay strategy for improved performance. By leveraging 

the higher-resolution Venus 5m RGB images as a reference image, this approach aims to generate 

high-quality super-resolved images of the Sentinel-2 10m RGB images. The modified SRResNet 

network is designed to capture and learn the underlying patterns and details present in the Venus 

images, enabling it to effectively enhance the resolution of the Sentinel-2 images. In addition, the 

inclusion of perceptual loss based on the VGG network helps to preserve important visual features 

and maintain the overall image quality. The learning rate decay strategy ensures the network 

converges to an optimal solution by gradually reducing the learning rate during the training process. 

Our research contributes to the field of super-resolution by offering a novel approach specifically 

tailored for enhancing the resolution of Sentinel-2 10m RGB images using Venus 5m RGB images. 

The proposed methodology has the potential to benefit various applications, such as remote sensing, 

land cover analysis, and environmental monitoring, where high-resolution imagery is crucial for 

accurate and detailed analysis. In summary, our approach presents a promising solution for the 

super-resolution of Sentinel-2 10m RGB images, providing an effective means to obtain higher-

resolution imagery by leveraging the complementary information from Venus 5m RGB images. We 

used the SEN2VENµS dataset for this research. The SEN2VENµS dataset comprises cloud-free 

surface reflectance patches obtained from Sentinel-2 imagery. Notably, these patches are 

accompanied by corresponding reference surface reflectance patches captured at a remarkable 5-

meter resolution by the VENµS Micro-Satellite on the same acquisition day. To assess the 

effectiveness of the proposed approach, we evaluate it using widely used metrics such as mean 

squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM). 

These metrics provide quantitative measurements of the quality and fidelity of the super-resolved 

images.  

Experimental results demonstrate the effectiveness of our proposed approach in achieving 

improved super-resolution performance compared to existing methods. As an example, our method 

achieved a PSNR of 35.70 and an SSIM of 0.94 on the training dataset, outperforming the bicubic 

interpolation method, which yielded a PSNR of 29.53 and an SSIM of 0.92. On the validation dataset, 

our approach achieved a PSNR of 40.3809 and an SSIM of 0.98, while the bicubic interpolation 

method achieved a PSNR of 34.26 and an SSIM of 0.94. Finally, on the test dataset, our approach 

achieved a PSNR of 29.8231 and an SSIM of 0.90, whereas the bicubic interpolation method yielded 

a PSNR of 26.99 and an SSIM of 0.85. The evaluation based on MSE, PSNR, and SSIM metrics 

showcases the enhanced visual quality, increased image resolution, and improved similarity to the 

reference Venus images.   
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1. Introduction 

Among the earth observation missions in the optical domain that adopt a global 

coverage and free and open-data policy, Sentinel-2 currently stands out as having the 

highest spatial resolution (Aschbacher, 2012) [1]. Presently, there is no available open 

alternative to Sentinel-2's 10 m imagery with a revisit frequency of 5 days on a global or 

regional scale (Drusch, 2012) [2]. However, the 10 m resolution can be restrictive for 

certain applications like urban planning and disaster monitoring which require finer 

spatial details (Waldner, 2020)[3]. Therefore, the concept of Single Image Super-

Resolution (SISR) has garnered significant interest within the remote sensing community 

as a way to enhance resolution without additional data requirements (Dong, 2016) (Wang, 

2020)[4,5]. SISR aims to increase resolution using only a single low resolution input image 

(Yang, 2019) [6]. 

Multi-Image Super-Resolution (MISR) is a more advanced approach that utilizes 

deep learning techniques to improve resolution by leveraging multiple images captured 

at different times or viewpoints (Ma, 2020) (Wang Y. W., 2019) [7,8]. By incorporating 

temporal or multi-view information, MISR can generate higher-resolution images beyond 

the limits of SISR (Xu, 2010) [9]. Deep learning methods like convolutional neural 

networks (CNNs) are commonly used for MISR to model complex relationships between 

low and high-resolution training image pairs (Ledig, 2017) (Wang X. G., 2018)[10,11]. The 

networks learn from multiple image sequences to understand temporal and view 

differences (Tian, 2020)[12]. 

Unlike SISR's reliance on a single input, MISR exploits additional information from 

multiple images to address challenges like scene dynamics, occlusion, and lighting 

variation. The complementary multi-temporal or multi-view data improves accuracy and 

robustness compared to SISR. By combining different viewpoints and times, MISR 

handles ambiguities and enhances image quality. For dynamic scenes, MISR leverages 

temporal data more effectively than SISR to reduce artifacts. 

Multiple images also enable MISR to reduce noise and artifacts for smoother visual 

output. Integrating diverse data mitigates imperfections in individual low-resolution 

inputs. Leveraging multiple sources provides better spatial coherence and alignment vital 

for scientific analysis. In challenging conditions like clouds or poor lighting, MISR's use 

of multiple images makes it more reliable than SISR (Jiang, 2021) [13]. 

Overall, MISR with deep learning is superior to SISR by exploiting multiple images. 

MISR's advantages in handling dynamics, reducing artifacts, ensuring consistency, and 

performing robustly make it valuable for resolution enhancement in scientific 

applications. 

We apply MISR with a SRresnet CNN architecture to improve Sentinel-2 RGB 

resolution. High-resolution Venus satellite RGB images serve as ground truth training 

data. This reference data enables effective model training to significantly improve 

Sentinel-2 resolution. The Venus images provide valuable information to guide super-

resolution and validate performance. 

2. Methods 

Our proposed approach utilizes a modified SRResNet network architecture for 

super-resolution of Sentinel-2 10m RGB images using Venus 5m RGB images. The 

SRResNet network comprises residual blocks that facilitate effective learning of high-

resolution details. The network takes low-resolution Sentinel-2 RGB images as input and 

generates high-resolution RGB images as output. SRResNet utilizes pixel shuffling instead 

of transpose convolution, which has demonstrated superior performance in upsampling 
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(Ledig et al.,2017). It incorporates convolutional layers, activation functions, and batch 

normalization to enhance the learning process and enable effective feature extraction. 

2.1. Make Improvements in SRResNet Architecture 

To improve the training process, we introduce a learning rate decay strategy and we 

have used perceptual loss. The learning rate decay technique gradually reduces the 

learning rate during training. It helps the model converge to a better solution by allowing 

smaller learning steps when progress becomes stagnant. In our experiments, we 

monitored the validation loss, and if it did not improve after two consecutive loops, we 

multiplied the learning rate by a decay factor of 0.9. Multiplying the learning rate by a 

decay factor of 0.9 reduces the step size during optimization, allowing the model to make 

smaller adjustments to its parameters and potentially escape local minima or plateaus in 

the loss landscape.This strategy encourages the model to fine-tune its parameters and 

make more precise adjustments, leading to improved performance. 

 

Figure 1. Learning rates in each epoch. 

To encourage the generation of high-resolution images that capture perceptual 

details, we incorporate a perceptual loss based on the VGG network. This loss measures 

the difference between the high-resolution and low-resolution images in terms of 

extracted features. By including this loss in the total loss calculation, we guide the model 

to generate visually appealing and contextually accurate images. By using perceptual loss, 

the model is encouraged to generate outputs that not only match the ground truth at the 

pixel level but also capture higher-level features like textures, structures, and object 

semantics. This often leads to visually more pleasing and semantically meaningful results. 

Perceptual loss is a metric that measures the perceptual similarity between two 

images by comparing their high-level features. In this case, a pre-trained VGG19 network 

is used to extract the features from both the input and target images. By comparing these 

features, the perceptual loss provides a measure of how visually similar the super-

resolved image is to the ground truth high-resolution image. MSE loss primarily focuses 

on pixel-wise differences between the super-resolved and target images. However, this 

loss function does not necessarily capture the perceptual quality of the reconstructed 

image. Perceptual loss, by considering high-level features, enables the network to better 

optimize for visual similarity, leading to more visually pleasing results. Perceptual loss 

helps preserve the natural characteristics of the image, such as textures, edges, and 

structures. The network learns to generate images that are not only visually similar to the 

ground truth but also exhibit similar high-level features. This leads to improved 

preservation of fine details and overall image quality.  MSE loss is sensitive to noise and 

can lead to over-smoothing of the output image. Perceptual loss, by considering high-level 

features instead of pixel-level differences, is less affected by noise and can generate 
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sharper and more realistic results. Perceptual loss accounts for differences in illumination 

and color between the input and target images. By considering high-level features, the 

network can better handle variations in lighting conditions and color balance, resulting in 

more visually consistent and accurate reconstructions. By incorporating perceptual loss 

into the network training, the SRResNet architecture can produce super-resolved images 

that not only achieve high fidelity to the ground truth but also exhibit improved 

perceptual quality and natural image characteristics. In summary, the modifications to the 

SRResNet architecture aim to address issues related to training convergence, perceptual 

quality, sensitivity to noise, and handling variations in illumination and color. The 

incorporation of a learning rate decay strategy and perceptual loss is motivated by the 

desire to improve the overall performance and visual quality of the super-resolution 

model. 

2.2. Super-Resolution Metrics 

When evaluating the performance of super-resolution algorithms, it is crucial to 

assess their fidelity and ability to preserve image structures. Two widely adopted 

quantitative metrics for this purpose are the peak signal-to-noise ratio (PSNR) and the 

structural similarity index (SSIM) (Wang et al., 2004) [14]. 

PSNR provides a measure of the quality of a super-resolution image by quantifying 

the ratio between the maximum possible signal power and the distortion caused by the 

reconstruction process. Mathematically, PSNR is computed as: 

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 (
𝑣(𝑚𝑎𝑥)
2
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Here, 𝑣(𝑚𝑎𝑥)
2 represents the maximum possible difference between two pixel values 

and MSE(y, ŷ) denotes the mean squared error between the original high-resolution image 

(y) and the reconstructed super-resolution image (ŷ). The MSE is computed as the average 

squared difference between corresponding pixel values across all rows (W), columns (H), 

and channels (C) of the image. 

In addition to PSNR, the structural similarity index (SSIM) is another key metric used 

for evaluating image quality. Unlike PSNR, SSIM focuses more specifically on the 

structural information contained within the images. It considers factors such as luminance, 

contrast, and structural similarity between the super-resolution image and the reference 

high-resolution image. 

The SSIM index can be expressed as a combination of three components: luminance 

similarity (luminance mean and variance), contrast similarity, and structural similarity. 

These components are calculated by comparing local image patches and computing their 

respective similarities. The final SSIM score ranges from 0 to 1, with 1 indicating a perfect 

match between the compared images. 

By utilizing both PSNR and SSIM as quantitative metrics, we can effectively evaluate 

the performance of our super-resolution algorithm in terms of overall image fidelity and 

structural preservation. These metrics provide valuable insights into the quality and 

accuracy of the reconstructed high-resolution images compared to their reference 

counterparts. 

3. Results and Discussions 

The evaluation of our proposed approach was performed on the SEN2VENµS 

dataset (J.Michel et al., 2023)[15]. We have harnessed the comprehensive SEN2VENµS 
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dataset to enhance the depth and robustness of our findings. This dataset, detailed in the 

referenced paper, comprises an extensive collection of 132,955 patches, collectively 

amounting to 116 gigabytes of data. Spanning 29 distinct sites across various geographical 

locations, the dataset showcases a diverse array of landscapes, including natural, semi-

natural, urban areas, forests, and shorelines. This diversity is observed over a two-year 

period, encapsulating different seasons and contributing valuable context to our study. 

Acknowledging an inherent imbalance in patch distribution across sites, it's crucial to 

recognize that this imbalance is distinctive in nature, focusing on capturing the inherent 

variability and equity among different landscape types rather than adhering to a 

conventional uniform distribution of patches per site. the SEN2VENµS dataset serves as 

a robust foundation for our research, providing both substantial size and a nuanced 

appreciation of its diversity. 

We computed the mean squared error (MSE), peak signal-to-noise ratio (PSNR), and 

structural similarity index (SSIM) metrics to assess the performance of the generated high-

resolution RGB images compared to the ground truth Venus RGB images. Our 

experimental results demonstrate the effectiveness of our proposed approach. 

 

 

(a) (b) 

Figure 2. This figure shows input and output images as: (a) Sentinel-2 RGB input image; (b) 2x 

Super-Resolved image. 

We achieved a PSNR of 40.8668 and an SSIM of 0.9821, indicating a significant 

improvement in spatial resolution and visual quality. The generated high-resolution RGB 

images exhibit enhanced details, sharpness, and overall fidelity to the ground truth Venus 

RGB images. These results highlight the potential of deep learning techniques for 

enhancing satellite RGB imagery, specifically in the context of super-resolution for 

Sentinel-2 RGB images using Venus RGB images. 
  



Environ. Sci. Proc. 2023, 5, x FOR PEER REVIEW 6 of 4 
 

 

Table 1. Average PSNR and SSIM scores (higher scores are better). 

Subset Bicubic SRResNet EDSR 

 

 

Train  

PSNR  SSIM PSNR SSIM PSNR  SSIM 

 

29.53 

 

0.92 

 

35.70 

 

0.94 

 

33.4   0.93 

Validation 

 

34.26 

 

0.94 

 

40.38 

 

0.98 

 

38.45   0.96 

Test 

 

26.99 

 

0.85 

 

29.82 

 

0.90 

 

27.8   0.82 

We evaluated the performance of our proposed super-resolution approach on the 

SEN2VENμS dataset using two quantitative metrics -peak signal-to-noise ratio (PSNR), 

and structural similarity index (SSIM). The results are summarized in Table 1. 

On the training set, our SRResNet model achieved a PSNR of 35.70dB and SSIM of 

0.94, significantly outperforming the baseline bicubic interpolation method which 

obtained a PSNR of 29.53dB and SSIM of 0.92. We observed similar trends on the 

validation and test sets, with our approach achieving PSNR gains of 6.12dB and 2.83dB 

respectively compared to bicubic interpolation. These results validate the effectiveness of 

our proposed approach in enhancing the spatial resolution of Sentinel-2 RGB images. 

To analyze the impact of our proposed improvements to the SRResNet architecture, 

we conducted an ablation study by selectively removing components and evaluating the 

performance. 

First, we trained the network without perceptual loss. This resulted in a drop in 

performance, with the PSNR on the validation set reducing from 40.38dB to 38.21dB. This 

highlights the importance of perceptual loss in improving visual quality. 

Next, we removed the learning rate decay strategy. The validation PSNR decreased 

slightly to 40.05dB, indicating that the learning rate decay provides a small but consistent 

boost. 

Lastly, we evaluated a basic SRResNet model without our proposed enhancements. 

This variant achieved a validation PSNR of 37.62dB, which is significantly lower than our 

complete approach. 

The ablation study empirically demonstrates the benefits provided by the perceptual 

loss and learning rate decay techniques in enhancing the super-resolution performance. 

The components complement each other and contribute positively to the overall results. 

In summary, the quantitative results and ablation analysis validate our approach and 

confirm its effectiveness for the super-resolution task. The proposed techniques help the 

model reconstruct higher fidelity 5m resolution RGB images from 10m Sentinel-2 data. 

4. Conclusions and Future Work 

In this study, we have introduced a novel approach for achieving 2x super-resolution 

of Sentinel-2 RGB bands, enabling a resolution of 5m. Empirical results showcase the 

potential of our methodology in the domain of satellite image super-resolution, 

particularly in the context of Sentinel-2 imagery. Our proposed methodology opens 

avenues for future research and exploration and demonstrated notable success in 

enhancing the resolution of Sentinel-2 RGB bands, providing clear benefits for 

applications requiring finer spatial details. The incorporation of a learning rate decay 

strategy and perceptual loss in the SRResNet architecture contributed to improved 

convergence and perceptual quality in the generated images. We plan to extend our work 

by investigating the application of super-resolution algorithms to other bands of Sentinel-

2, particularly focusing on the NIR band. Furthermore, we aim to leverage the capabilities 



Environ. Sci. Proc. 2023, 5, x FOR PEER REVIEW 7 of 4 
 

 

of generative adversarial networks (GANs) to improve the quality of the results. 

Additionally, we intend to explore the feasibility of performing 4x super-resolution for 

these additional bands using the same dataset. To further enhance the resolution of the 

RGB bands to 5m, we anticipate utilizing complementary satellite imagery sources such 

as WorldView3. Lastly, we aim to generate 4x super-resolution for the first 8 bands of 

Sentinel-2. These future endeavors hold promise for advancing the field of super-

resolution in Sentinel-2 imagery, leading to improved resolutions and enhanced image 

quality. 
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