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Abstract: The purpose of this work is to present a three-species harvesting food web model that 1

takes into account with the interactions of susceptible prey, infected prey, and predator species. Prey 2

species are assumed to expand logistically in the absence of predator species. Crowley-Martin and 3

Beddington-DeAngelis Functional Responses are used by predators to consume both susceptible and 4

infected prey. Additionally, susceptible prey is consumed by infected prey in the formation of Holling 5

type II response. Both prey populations are considered when prey harvesting is taken into account. 6

Boundedness, positivity, and positive invariance are considered in this study. The investigation 7

covers all equilibrium points that are biologically feasible. Local stability is evaluated by analyzing 8

the distribution of eigen values, while global stability is evaluated using suitable Lyapunov functions. 9

Moreover, Hopf bifurcation has analyzed at the harvesting rate H1. In the end, we evaluate numerical 10

solutions based on our findings. 11

Keywords: Prey-Predator; Crowley-Martin type; Beddington-DeAngelis form; Equilibrium; Stability; 12

Bifurcation 13

1. Introduction 14

In environmental nature, a variety of diseases may arise and spread among species 15

when they interact with other organisms. Mathematical models have evolved into impor- 16

tant tools for evaluating disease propagation and control. An Eco-epidemiological model of 17

diseased three-species food webs includes infectious prey, susceptible prey, and predators. 18

At the beginning of the 20th century, several strategies were established in mathematical 19

ecology to predict the presence of organisms and species of growth. The first significant 20

attempt in this field was the well-known traditional Lotka-Volterra model [1] in 1927. 21

The investigation of predator-prey relationships is a crucial field of ecology research. 22

The mathematical modeling of epidemics has become a prominent field of research. In this 23

field, some of the substantial quantity of research has been done [2],[3],[4]. Furthermore, 24

mining and harvesting are practiced on a large number of the species found in the natural 25

environment. Harvesting of the species is required for coexistent and hence, the researchers 26

were quite interested in the proposed ecological models. Different methods of harvesting 27

have been proposed and explored, including constant harvesting, density dependent 28

proportional harvesting, and nonlinear harvesting [5],[6]. By considering the above in view, 29

in this work we propose and study an eco-epidemiological prey-predator model involving 30

different functional responses of harvesting. The majority of functional responses, like 31

Holling types, are classified as "prey-dependent" because they depend on either the predator 32

or the prey [7]. Both the prey and the predator are taken into account in Crowley-Martin 33

reactions. In the Beddington-DeAngelis form, handling prey and hunting prey are viewed 34

as two separate and independent actions. The response function of Beddington-DeAngelis, 35

Holling type II, and Crowley-Martin form are considered in this work. The main goal of this 36

Version November 17, 2023 submitted to Journal Not Specified https://www.mdpi.com/journal/notspecified

https://doi.org/10.3390/1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com
https://orcid.org/0009-0005-9804-8663
https://orcid.org/0000-0001-5475-9766
https://orcid.org/0000-0002-9074-8164
https://orcid.org/0009-0005-8683-3648
https://www.mdpi.com/journal/notspecified


Version November 17, 2023 submitted to Journal Not Specified 2 of 7

study is to analyze how disease and prey harvesting affect the predator-prey relationship. 37

To the best of our knowledge, no studies have looked at an eco-epidemiological model of 38

the three species food web of harvesting with varying functional responses. 39

The section 2 addresses the mathematical expression. Some preliminary observations 40

are presented in Section 3. The boundary equilibrium points and stability are shown in 41

Section 4. In subsection 5.1, the coexistence condition of the interior equilibrium point 42

E∗(a∗, i∗, r∗) is determined by examining its local stability. Global stability analysis for E∗
43

is verified in subsection 5.2. Furthermore, Section 6, investigates Hopf-bifurcation based on 44

harvesting rate H1. MATLAB software tool is used quantitatively to validate all key results 45

in Section 7. The conclusion of this research, as well as the environmental impacts of our 46

results, are shown in Section 8, which ends our research. 47

2. Formation and Flowchart of the equation 48

Prey harvesting is incorporated into the models for a predator-prey system. 49

dA
dT = x1A(1 − A+I

K )− πAI
s1+A − α1AR

(1+ηA)(1+µR)
−H1E1A,

dI
dT = πAI

s1+A − d1I − g1IR
(1+βI+γR)

−H2E2I ,
dR
dT = −d2R+ mα1AR

(1+ηA)(1+µR)
+ mg1IR

(1+βI+γR)
,

 (1)

by the positive conditions A(0) = A0 ≥ 0, I(0) = I0 ≥ 0 and R(0) = R0 ≥ 0. 50

Table 1. Ecological description of the model

Parameters Ecological Description

R,A, I predator species, susceptible prey, and in f ected prey
π, x In f ectious and growth rate o f prey

K, η, E carrying capacity, handling time o f predators, harvesting e f f ort
s1 and β in f ected prey and predators hal f saturation constant

m, α1 conversion o f prey to predators, o f susceptible prey′s predation rate
γ, µ magnitude o f inter f erence by predators o f beddington and crowley
g1 consuming rate o f susceptible prey by predator

d1 and d2 mortality rate in f ectious prey and predators
H1, H2 susceptible and in f ected prey′s catchability coe f f icient

Figure 1. Flowchart of the Dynamical Model with Different Functional Responses
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To minimize the parameters in the model (1), we modify the variables as follows: 51

a = A
K , i = I

K , r = R
K ; and the dimensionless time t = πKT. The transformations can be 52

utilized to formate the equations (1) in dimensionless form. 53

da
dt = xa(1 − a − i)− πai

s+a −
αar

(1+ηa)(1+µr) − h1a,
di
dt = πai

s+a − di − θir
(1+βi+γr) − h2i,

dr
dt = −δr + mαar

(1+ηa)(1+µr) +
mθir

(1+βi+γr)

 (2)

where, x = x1
πK , α = α1

πK , s = s1
K , θ = g1

ρK , d = d1
πK , δ = d2

πK . Now, the model’s conditions 54

are, a(0) = a0 ≥ 0, i(0) = i0 ≥ 0 and r(0) = r0 ≥ 0. 55

3. Positivity and Boundedness 56

Let F ≡ (a(t), i(t), r(t))T and V(F) = (V1(F),V2(F),V3(F))T , where 57

V1(F) = xa(1 − a − i)− πai
s + a

− αar
(1 + ηa)(1 + µr)

− h1a,

V2(F) =
πai

s + a
− di − θai

(1 + βi + γa)
− h2i,

V3(F) = −δr +
mαar

(1 + ηa)(1 + µr)
+

mθir
(1 + βi + γr)

.

Since, the equation can be denote as dF
dt = V(F) where V : C+→R3

+ with F(0) = F0∈R3
+. 58

Thus, Vm∈C∞(R) for m = 1, 2, 3. V is continuous and Lipschitzian function on R3
+. It 59

contains non-negative conditions. So, the region R3
+ is under invariant condition. 60

Theorem 1. The model’s (2) potential responses are bounded, and it is in R3
+. 61

Proof. Let (a(t), i(t), r(t)) are the prescribed response for the model (2). 62

Let, da
dt ≤ a(1 − a). 63

lim supt→∞ a(t) ≤ 1. Let ψ = a + i + r. 64

dψ

dt
=xa(1 − a)− ai(x +

π

s + a
)− αar(1 − m)

(1 + ηa)(1 + µr)
− h1a +

ai
s + a

− di

− θir
(1 + βi + γr)

(1 − m)− h2i − δr,

≤ xa(1 − a)− h1a − air − i(d + h2)− δr, (since m < 1)), 65

≤ x
4 − h1a − i(d + h2)− δr (since Max {xa(1 − a)} = x

4 ), 66

≤ x
4 − βψ. where, β = min {h1, d + h2, δ}. 67

Thus, we have dψ
dt + βψ ≤ x

4 . we have 0 < ψ≤ x
4β (1− exp−βt

) + ψ(a0, i0, r0)exp−βt. If t→∞, 68

since 0 < ψ ≤ x
4β . Hence, the solutions of model (2) are confined to positive around Ω. 69

where, Ω = {(a, i, r) ∈ R3
+ : a + i + r ≤ x

4β+ ∈}. 70

4. Presence of Boundary Equilibrium Points 71

• E0, the equilibria of trivial point. Here, E0 (0, 0, 0) exists. 72

• E1, no infection and predator-free Equilibria, E1 (
x−h1

x , 0, 0) exists for h1 < x. 73

• E2 is the equilibria of without predator, E2 (ā, ī, 0) where ā = s(d+h2)
(1−d−h2)

and 74

ī = (x(1−a)−h1)(s+a)
x . E2 exists for s(d + h2) < (1 − d − h2) and h1 < x(1 − a). 75

• E3 is the no diseases of equilibria , E3 (ā, 0, r̄) where ā = δ(1+µr)
mα−ηδ(1+µr) and 76

ī = (x(1−a)−h1)(1+ηa)(1+µ)
α . E3 exists for ηδ(1 + µr) < mα and h1 < x(1 − a). 77
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• E∗ is the equilibria of coexistent state, E∗ (a∗, i∗, r∗). It exists for δ > mα, (1 + βi∗ + 78

γr∗) > 0, x(1 − a∗ − i∗) > h1 − i∗, αs > 0. Where, 79

a∗ = s+((d+h2)+(1+βi∗+γr∗)+θr∗)
(1+βi∗+γr∗) , i∗ = (1+β+γr∗)(δ(1+ηa∗)(1+µr∗)−mαa∗)

(1+ηa∗)(1+µr∗)mθ
, 80

r∗ = ((1+ηa∗)(1+µ))(s+a∗(x(1−a∗−i∗)−h1)−i∗)
α(s+a∗) . 81

5. Stability Analysis 82

5.1. Local Analysis 83

The matrix of Jacobian equations is used to investigate local stability at a point in 84

(a, i, r) is 85

n11 =x(1 − 2a − i)− si
(s + a)2 − αr

(1 + ηa)2(1 + µr)
− h1, n12 = −ax − a

a + s
,

n13 =− αa
(1 + µr)2(1 + ηa)2 , n21 =

si
(s + a)2 , n31 =

αxm
(1 + ηa)2(1 + µr)

,

n22 =
a

a + s
− d − xθ(1 + γr)

(1 + βi + γr)2 − h2, n23 = − iθ(1 + βi)
(1 + βi + γr)2 ,

n32 =
θxm(1 + γr)
(1 + βi + γr)2 , n33 = −δ +

αam
(1 + µr)2(1 + ηa)

+
θim(1 + βi)

(1 + βi + γr)2 .

Theorem 2. The following are the points to verify stability condition of model (2). They are 86

1. Trivial point of equilibria E0(0, 0, 0) is LAS if x < h1. 87

2. The infectious and predator-free points E1(
x−h1

x , 0, 0) is LAS if x < h1, −d − h2 > x−h1
x−h1+s , 88

δ < (x−h1)mα
1+η(x−h1)

. 89

3. The equilibria with no predator (ā, ī, 0) is LAS if Y11 > 0, Y12 > 0, and δ > mαā
1+η ā + 90

īmθ(1+βī)
(βī+1)2 . 91

Proof. 1. The trivial point E0(0, 0, 0) of the eigen values are x − h1, −d − h2, -δ. Hence, it is 92

LAS when x < h1 if not, it is unstable. 93

2. The eigen values of E1(
x−h1

x , 0, 0) are h1 − x, (x−h1)
(x−h1)+s − d − h2, δ + (x−h1)mα

1+η(x−h1)
. Hence, it 94

is LAS if x < h1, −d − h2 > (x−h1)
(x−h1)+s , δ < (x−h1)mα

1+η(x−h1)
if not, it is unstable. 95

3. The matrix in its Jacobian form is 96

n11 =x(1 − 2ā − ī)− sī
(s + ā)2 − h1, n12 = −āx − ā

ā + s
, n13 = − αā

1 + η ā
,

n21 =
sī

(s + ā)2 , n22 =
ā

ā + s
− d − h2, n23 = − īθ(1 + βi)

(βī + 1)2 , n31 = 0, n32 = 0,

n33 =− δ +
āmα

1 + η ā
+

imθ(1 + βi)
(βi + 1)2 .

The characteristic form of J(E2) is (n33 − λ)(λ2 + S11λ + S12) = 0. Where S11 = −(n11 + 97

n22) and S12 = n11n22 − n12n21. As a result, one of the eigenvalues of the equation is n33, 98

(i.e) negative. Hence, the other two must likewise be negative. So, E2 is LAS if S11 > 0, 99

S12 > 0 and δ > āmα
1+η ā +

imθ(1+βi)
(βi+1)2 . 100

Theorem 3. Infectious-free point of equilibrium (ā, 0, r̄) is LAS if D11 > 0, D12 > 0 and 101

−(d + rθ(1+γr)
(βb+γr+1)2 + h2) >

a
a+s . 102

(This demonstration is equivalent to Theorem 2 condition (3) ) 103

Theorem 4. The equilibrium point E∗ is LAS if G1 > 0, G3 > 0, and G1G2 − G3 > 0. 104



Version November 17, 2023 submitted to Journal Not Specified 5 of 7

Proof. As for the model (2), its Jacobian matrix is at E∗(a∗, i∗, r∗) 105

g11 =x(1 − 2a∗ − i∗)− si∗

(s + a∗)2 − αr∗

(1 + ηa∗)2(1 + µr∗)
− h1,

g12 =− a∗x − a∗

a∗ + p
, g13 = − αa∗

(1 + µr∗)2(1 + ηa∗)2 , g21 =
si∗

(s + a∗)2 ,

g31 =
αr∗m

(1 + ηa∗)2(1 + µr∗)
, g22 =

a∗

a∗ + s
− d − r∗θ(1 + γr∗)

(1 + βi∗ + γr∗)2 − h2,

g23 =− i∗θ(1 + βi∗)
(1 + βi∗ + γr∗)2 , g32 =

θr∗m(1 + γr∗)
(1 + βi∗ + γr∗)2 , g33 = 0

The cubic characteristic equation is J(E∗) is 106

λ3 + G1λ2 + G2λ + Y3 = 0. (3)

G1 = −(g11 + g22) , G2 = −(g12g21 + g13g31 + g23g32 − g11g22 − g11g33), 107

G3 = −(g12g23g31 + g13g21g32 − g13g31g22 − g11g23g32). 108

If G1 > 0, G3 > 0, and G1G2 − G3 > 0. The root of the characteristic equation is negative 109

real parts iff G1, G3, and G1G2 − G3 > 0. According to Routh-Hurwitz E∗ is LAS. 110

5.2. Global Analysis 111

Theorem 5. The point E∗ is GAS in W = {(a, i, r) : a > a∗, i > i∗ and r > r∗ or a < a∗, i < i∗ 112

and r < r∗} 113

Proof. A suitable Lyapunov function is expressed as 114

N1(a, i, r) = N2(a − a∗ − a∗ln
a
a∗

) + (i − i∗ − i∗ln
i
i∗
) +N3(r − r∗ − r∗ln

r
r∗
), 115

where N2,N3 are positive constant. 116

Using the solution of (2) and differentiating N1 with regard to t 117

dN1
dt = ( a−a∗

a ) da
dt +N2(

i−i∗
i ) di

dt +N3(
r−r∗

r ) dr
dt 118

= [x(1 − a − i)− πi
s+a −

αr
(1+ηa)(1+µr) − h1](a − a∗) +N2[

πa
s+a − d − θr

(1+βi+γr) − h2](i − i∗) 119

+N3[−δ + mαa
(1+ηa)(1+µr) +

mθi
(1+βi+γr ](r − r∗). 120

Therefore, 121

dN1
dt = −(a − a∗)[x(a + i)− (a∗ + i∗)]− π( i

s+a −
i∗

s+a∗ )− α( r
(1+ηa)(1+µr) −

r∗
(1+ηa∗)(1+µr∗) )] 122

−N2(i − i∗)[( a
(s+a) −

a∗
(s+a∗) )− θ( r

a+(1+βi+γr) −
r∗

1+βi∗+γr∗ ] 123

−N3(r − r∗)m[( α(a−a∗)+rµ∗(a−a∗)
(1+ηa)(1+µr)(1+ηa∗)(1+µr∗) )− θ( (i−i∗)+γ(ir∗−i∗r)

(1+βi+γr)(1+βi∗+γr∗) )]. 124

We can observe that dN1
dt , the region area is negtive: 125

W = {(a, i, r) : a > a∗, i > i∗ and r > r∗)or a < a∗, i < i∗ and r < r∗} and it shows, N is a 126

suitable Lyapunov function for all the solutions in W. 127

6. Analysis of the Hopf bifurcation 128

Theorem 6. If the bifurcating parameter H1 exceeds a substantial value, then it occurs Hopf- 129

bifurcation in the system (2). The presence of the Hopf-bifurcation requirements listed below is H1 130

= H∗
1 131

1. X (H∗
1)R(H∗

1)−D(H∗
1) = 0, 132

2. d
dH1

(Re(γ(H1)))|H1=H∗
1
̸= 0, where γ represents the positive value of the equilibrium point 133

and is the zero of the characteristic equation. 134

Proof. For H1 = H∗
1 , let (3) denotes 135

(γ2(H∗
1) +R(H∗

1))(γ(H∗
1) +X (H∗

1)) = 0. (i.e) ±i
√
R(H∗

1) and −X (H∗
1) are the roots of 136

the equation (6). To establish the Hopf-bifurcation exists at the point , we must fulfill 137

the transversality requirement. H∗
1 = H1. d

dH1
(Re(γ(H1)))|H1=H∗

1
̸= 0. For all H1, the 138
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roots of the form γ1,2 (H1) = r(H1)± is(H1), and γ3(H1) = −X (H1). Now, we check the 139

condition d
dH1

(Re(γj(H1)))|H1=H∗
1
̸= 0, j = 1, 2.Let, γ1(H1)= r(H1) + is(H1) in (6), we get 140

γ1(H1) + iγ2(H1) = 0, 141

where, γ1(H1) = r3(H1)+ r2(H1)X (H1)− 3r(H1)s2(H1)− s2(H1)X (H1)+ r(H1)R(H1) 142

+X (H1)R(H1), γ2(H1) = 3r2(H1)s(H1) + 2r(H1)s(H1)X (H1)− s3(H1) + s(H1)R(H1). 143

To complete the equation (6), we need γ1(H1) = 0 and γ2(H1) = 0, then differentiating γ1 144

and γ2 with respect to H1. Since 145

dγ1
dH1

= F1(H1)r
′
(H1)−F2(H1)s

′
(H1) +F3(H1) = 0, (4)

146

dγ2
dH1

= F2(H1)r
′
(H1) +F1(H1)s

′
(H1) +F4(H1) = 0, (5)

147

F1(H1) = 3r2(H1) + 2r(H1)X (H1)− 3s2(H1) +R(H1),

F2(H1) = 6r(H1)s(H1) + 2s(H1)X (H1),

F3(H1) = r2(H1)X
′
(H1)− s2(H1)X

′
(H1) +D′

(H1) +R′
(H1)r(H1),

F4(H1) = 2r(H1)s(H1)X
′
(H1) + s(H1)R

′
(H1).

148

r
′
(H1) = −F1(H1)F3(H1) +F2(H1)F4(H1)

F 2
1 (H1) +F 2

2 (H1)
. (6)

Substituting r(H1) = 0 and s(H1) =
√
R(H1) at H1 = H∗

1 on F1(H1),F2(H1),F3(H1) 149

and F4(H1). So, F1(H∗
1) = −2R(H∗

1),F2(H∗
1) = 2

√
R(H∗

1)X (H∗
1), 150

F3(H∗
1) = −R(H∗

1)X
′
(H∗

1) +D′
(H∗

1), F4(H∗
1) =

√
R(H∗

1)R
′
(H∗

1). 151

r
′
(H∗

1) =
D′

(H∗
1 )−(X (H∗

1 )R
′
(H∗

1 )+R(H∗
1 )X

′
(H∗

1 ))

2(R2(H∗
1 )+X 2(v∗)) , (7)

If D′
(H∗

1)− (X (H∗
1)R

′
(H∗

1) +R(H∗
1)X

′H∗
1)) ̸= 0, 152

(i.e) d
dH1

(Re(γj(H1)))|H1=H∗
1
= r

′
(H∗

1) ̸= 0. j = 1, 2, and γ3(H∗
1) = −X (H∗

1) ̸= 0. 153

Thus, the condition J ′
(H∗

1) − (X (H∗
1)R

′
(H∗

1) +R(H∗
1)X

′
(H∗

1)) ̸= 0, It has been con- 154

firmed that the transversality criteria applies to system (2) , and Hopf-bifurcation occurs at 155

H1 = H∗
1 . 156

7. Numerical Calculations of the model 157

To verify the theoretical conclusions, this part performs a calculations on system 158

(2). Here, harvesting rate H1 is employed as an adjustable element. The simulation is 159

accomplished by utilizing MATLAB software tools for the fixed parameter. Here, x = 0.2, δ = 160

0.1, d = 0.2, θ = 0.21, π = (variable), η = 0.13, α = 0.3, µ = 0.11 . If H1 is 0.21, when bifurcation 161

occurs, the model (2) for non-negative equilibirium is LAS E∗(0.52764, 0.0916818, 0.203662) 162

and the rest of the adjustable elements have identical values. The model’s (2) stability 163

is lost by increasing the bifurcation adjustable element to H1 = 0.47, leading to LAU at 164

E∗(0.53824, 0.0917748, 0.320178). Model (2) is able to pass the transversality conditions for 165

(Re(γ(H1)))|H1=H∗
1
= 0.002195 ̸= 0. Hence, the graph shows how the model’s behavior 166

changes at a harvesting rate of H1 = 0.47. 167

168

8. Conclusions and Discussion 169

Our investigation involved examining an eco-epidemiological model where sick prey 170

are harvested from the prey species, and the predator eats both sick and healthy prey. The 171
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Figure 2. Dynamical changes of the Model(2) at harvesting rate, H1 = 0.47

developed system (2) has been shown to be biologically well-behaved by the boundedness 172

and positivity results. In the event that if the growing rate of uninfected prey is lower than 173

the harvest rate, then the population tends to be extinct. It has been demonstrated that both 174

the local stability at every ecologically possible points and the coexistence (2) are stable. 175

The analytical and numerical outcomes of Hopf bifurcation for harvesting rate H1 have 176

been analyzed and evaluated in the above. The dynamic of prey harvesting is powerful 177

due to the complex behavior demonstrated in this study. Thus, we believed that ordinary 178

differential equations will be utilized to solve many future technological equations. 179

Abbreviations 180

The following abbreviations are used in this manuscript: 181

182

LAS Locally Asymptotically Stable
GAS Globally Asymptotically Stable
LAU Locally Asymptotically Unstable

183
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