Methylmercury-induced ferroptosis may be attenuated by vitamin K in PC12 cells

Lin Yan1, Tao Zehua1, Chen Jian1, Zhang Xinyu1, Hu Jing1, Yang Bobo1, Wang Suhua1, Xing Guangwei1, Michael Aschner2, Alexey A Tinkov2, Lu Rongzhu1
1. Department of Preventive Medicine and Health Laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013;
2. Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
3. Department of Medical Elementology, Peoples’ Friendship University of Russia (RUuD University), Moscow 117198, Russia

INTRODUCTION
As a ubiquitous environmental pollutant, methylmercury (MeHg) induces toxic effects in the nervous system.
However, the exact mechanism of its neurotoxicity has not been fully elucidated. Ferroptosis may be related to methylmercury toxicity and methylmercury-induced ferroptosis may be attenuated by vitamin K.

METHOD
PC12 cells with neuron-like characteristics were selected and treated with different concentrations of MeHg (0, 1, 2.5, 5, 10 μM) for 6 h. CCK8 was used to detect cell viability. FerroOrange fluorescent probe was used to detect the level of free ferrous ions in cells, microplate method was used to detect the level of reduced GSH in cells, FSP1, SLC7A11 and GPX4 protein expression were detected by western blotting, and the changes of Lipid ROS content in cells were detected by flow cytometry.

In the vitamin K intervention experiment, the MeHg group was treated with 5 μM MeHg for 6 h, the vitamin K + MeHg group was pretreated with vitamin K (0, 10, 20, 40, 80, 100 μM) for 1 h, and then co-treated with 5 μM MeHg for 6 h, the changes of intracellular Lipid ROS content were detected by flow cytometry.

RESULTS

Methylmercury exposure induced PC12 cytotoxicity

Methylmercury exposure triggered ferroptosis in PC12 cells

Vitamin K partially alleviated methylmercury-induced ferroptosis

CONCLUSION
MeHg can induce ferroptosis in neuron-like cells, and vitamin K intervention can alleviate MeHg-induced cytotoxicity and ferroptosis, its exact mechanism is worthy of further investigation.

FUTURE WORK
Next, we will further study the mechanism of vitamin K in alleviating methylmercury toxicity, and provide a new direction for the prevention and treatment of methylmercury neurotoxicity.

Contact e-mail: lurz@ujs.edu.cn (R Lu)

https://sciforum.net/event/IECTO2024