ECP 2024 Conference

The 3rd International Electronic Conference on Processes 29–31 May 2024 | Online

Structural Comparison of Sodium Bicarbonate and Hydrated Lime for Dry SO₂ Removal.

Robert Makomere^{1, *}, Lawrence Koech¹, Hilary Rutto¹, Alfayo Alugongo², Sammy Kiambi¹, Ngeleshi Kibambe³

¹Clean Technology and Applied Materials Research Group, Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark, Gauteng, 1900, South Africa

²Department of Industrial Engineering, Operation Management, and Mechanical Engineering, Vaal University of Technology, Andries Potgieter Blvd, Private Bag X021, Vanderbijlpark 1911, South Africa

³Center for Nanoengineering and Advanced Materials (CeNAM), School of Mining, Metallurgy, and Chemical Engineering, University of Johannesburg, Doorfontein Campus, 2028, South Africa

INTRODUCTION & AIM

Background: Dry flue gas desulphurisation (DFGD) is essential in mitigating SO_2 from coal fired power stations, waste-to-energy plants or industries utilising coal as a power source. It is imperative to neutralise anthropogenic SO_2 to prevent environmental and human health effects.

RESULTS & DISCUSSION...Cont

2. SEM analysis

Figure 1: SEM images of NaHCO₃ sorbent - (a) and (c) and Ca(OH)₂

South Africa, with only 13 power plants, produces twice as much SO_2 as a country like China, emphasizing the need to retrofit the cheaper DFGD system.

Aim: To compare the structural properties of nahcolite (NaHCO₃) and hydrated lime (Ca(OH)₂) for dry SO₂ removal

Figure 1: Eskom CFPPs SO₂ generation for the financial year 2019-2020 compared to the United States, European Union, and China (Myllyvirta, 2021).

METHOD

Materials.

Nahcolite, a naturally occurring NaHCO₃, from Botash Ltd., and commercial grade $Ca(OH)_2$ Kayla Africa, South Africa.

Characterisation techniques: Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, Barrett-Joyner-Halenda (BJH) analysis, Particle Size Distribution (PSD) analysis,

3. PSD Data

4. FTIR spectrum.

sorbent - (b) and (d)

and Fourier Transform Infrared (FTIR) spectroscopy

RESULTS & DISCUSSION

1. BET-BJH screening.

Table 1: Physical properties of the $Ca(OH)_2$ and $NaHCO_3$ from BET and BJH analysis.

Physical property	Ca(OH) ₂	NaHCO ₃
BET surface area, m ² /g	4.2360	0.2303
BET pore size, Å	601.753	117.312
BJH pore volume, cm ³ /g	0.089822	0.000639
*HK maximum pore volume, cm ³ /g	0.003861	0.000705

CONCLUSION

- Ca(OH)₂ has superior SSA and pore volume, promoting more gassolid contact and desirable for SO₂ mitigation
- NaHCO₃ has mesoporous intraparticle porosity, encouraging SO₂ diffusion through the particle
- The higher fraction of OH in Ca(OH)₂ ensures reactivity is less affected by contaminating CO₃⁻ groups
- Despite the advantages of Ca(OH)₂, raw NaHCO₃ cannot be disregarded as a potential substitute for DFGD

FUTURE WORK / REFERENCES

Future works: Evaluate the economic feasibility of using NaHCO₃ as a substitute for Ca(OH)₂ in DFGD systems. Myllyvirta, L., 2021. Eskom is now the world's most polluting power company.

https://ecp2024.sciforum.net/