[A0040]

A New Route for the Synthesis of Cyclic Thioureas and Related Compounds

Anatoly D. Shutalev

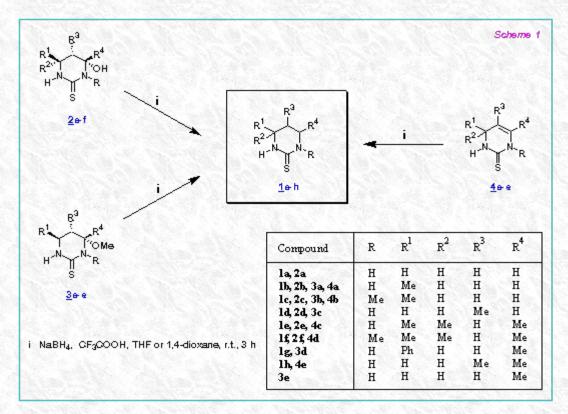
Department of Organic Chemistry, State Academy of Fine Chemical Technology, Vernadsky Avenue 86, Moscow 117571, Russia. Phone/Fax (095) 431-6332. E-mail: <u>shutalev@orc.ru</u> Received: 20 August 1999 / Uploaded: 27 August 1999

Abstract: Six-membered cyclic thioureas can be prepared by a convenient stereoselective method based on the reduction of readily available 4-hydroxy(or 4-alkoxy)hexahydropyrimidine-2-thiones or 1,2,3,4-tetrahydropyrimidine-2-thiones with NaBH₄ - CF₃COOH. Alternative method of the preparation of the target compounds includes reaction of 4-azido-, 4-acetoxy- or 4-arylsulfonylhexahydropyrimidine-2-thiones with NaBH₄.

Keywords: hexahydropyrimidine-2-thiones/ones, 1,2,3,4-tetrahydropyrimidine-2-thiones, tetrahydro-1,3-thiazine-2-thiones, sodium tetrahydroborate - trifluoacetic acid

Introduction
Results and Discussion
Conclusion
References

Introduction

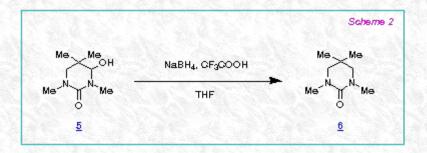

Six-membered cyclic thioureas, namely hexahydropyrimidine-2-thiones 1, are currently of interest due to their biological activity and other useful properties [1]. The application of the substances in organic synthesis has been described [2]. Besides, these compounds are valuable objects for spectroscopic and theoretical investigations.

The general method for synthesis of hexahydropyrimidine-2-thiones includes condensation of (N-C-C-C-N + C)- type. For example, they are prepared by cyclization of 1,3-diamines with thiophosgene, carbon disulfide, etc. [1]. However, this method suffers from the fact that rather often the starting 1,3-alkanediamines can not be easily obtained, especially in a stereoselective manner. In contrast, various 4-hydroxyhexahydropyrimidine-2-thiones 2, 4-alkoxyhexahydropyrimidine-2-thiones 3 and 1,2,3,4-tetrahydropyrimidine-2-thiones 4 are readily available [3]. It is known that these compounds react with nucleophiles to give the corresponding 4-substituted hexahydropyrimidine-2-thiones with H-nucleophiles could provide a simple general method for the synthesis of the target compounds. We report here on new

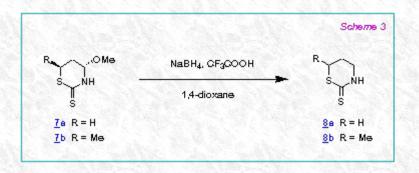
convenient procedures for the preparation of six-membered cyclic thioureas by reduction of 4-hydroxy(or 4alkoxy)hexahydropyrimidine-2-thiones, 1,2,3,4-tetrahydropyrimidine-2-thiones or some 4-functionally substituted hexahydropyrimidine-2-thiones. As reducing reagents we used sodium tetrahydroborate or sodium tetrahydroborate in the presence of carboxylic acids. Earlier the latter reducing system was successfully applied for the transformation of a-hydroxyalkylamides into N-alkylamides [5].

Results and Discussion

We found that the 4-hydroxyhexahydropyrimidine-2-thiones **2a-f** are readily reduced by NaBH₄ in the presence of CF₃COOH [molar ratio of **2** : NaBH₄ : CF₃COOH 1 : (3-4) : (20-30)] (THF or 1,4-dioxane, r.t., 3 h) to form the corresponding hexahydropyrimidine-2-thiones **1a-f** in 83-99 % isolated yields (*Scheme 1*).

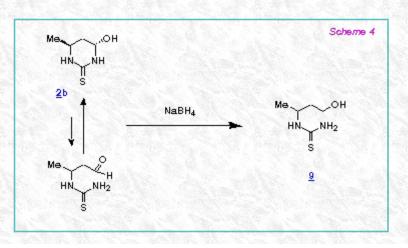


The reaction is usually carried out by the addition of CF₃COOH to the suspension of the pyrimidine and NaBH₄ in the solvent at 0 °C followed by stirring the reaction mixtures for 3 h at r.t. (*method A*). The reactions also proceed successfully with another order of the addition of the reagents: CF₃COOH and then dry pyrimidine are added to the suspension of NaBH₄ in the solvent cooled to 0 °C (*method B*) or NaBH₄ is added to the mixture of the pyrimidine, CF₃COOH and the solvent at 0 °C (*method C*).


4-Alkoxyhexahydropyrimidine-2-thiones **3** and 1,2,3,4-tetrahydropyrimidine-2-thiones **4** can equally well serve as the starting material for the synthesis of hexahydropyrimidine-2-thiones. Thus the reaction of alkoxypyrimidines **3a-e** with NaBH₄ - CF₃COOH in the above mentioned conditions gives the compounds **1b-d,g** in 80-99.5 % yields. Similarly, the reduction of the tetrahydropyrimidines **4a-e** affords the compounds **1b,c,e,f,h** in 82-98 % yields. It should be mentioned that the reduction of both **3a** and **3e** results in the formation of the same pyrimidine **1b**.

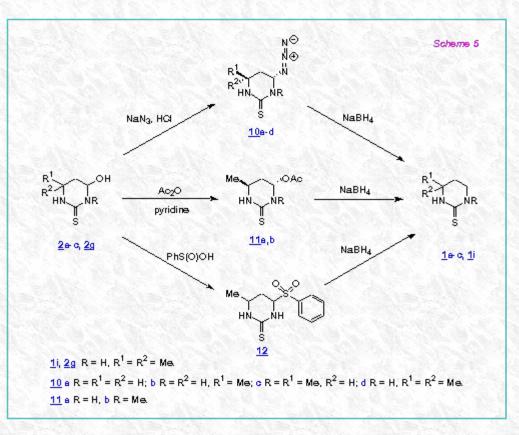
The reduction of compounds **2-4** proceeds in a diastereoselective manner. For example, the reduction of the methoxypyrimidine **3d** possessing two chiral carbon atoms results in the formation of the compound **1g** which is a mixture of the *cis* and *trans* diastereoisomers (96:4 respectively). Analogously, achiral tetrahydropyrimidine **4e** is converted into the compound **1h** as a mixture of *cis* and *trans* isomers (24:76) where *trans* isomer is predominant.

The reduction with NaBH₄ - CF₃COOH is highly efficient as well for the synthesis of six-membered cyclic ureas, namely hexahydropyrimidine-2-ones, starting from the corresponding 4-hydroxy derivatives, as we showed by the conversion of the hydroxypyrimidinone **5** to the compound **6** in 95 % isolated yield (*Scheme 2*).



Evidently, NaBH₄ - CF₃COOH can be also applied for the reduction of other nitrogen containing heterocycles possessing amidoalkylation properties. For example, cyclic dithiocarbamates, namely the tetrahydro-1,3-thiazine-2-thiones **8a,b**, are obtained in 79 and 93 % yields respectively by the reduction of the 4-methoxytetrahydro-1,3-thiazine-2-thiones **7a,b** with NaBH₄ - CF₃COOH according to the *method A* (*Scheme 3*).

We found that the reductive ability of the NaBH₄ - RCOOH system decreases sharply when CF₃COOH is displaced by the weaker acetic acid. Actually, the reduction of the compounds **2b**, **4d** with NaBH₄ - CH₃COOH in THF does not practically occur.


The reaction of 4-hydroxyhexahydropyrimidine-2-thiones with NaBH₄ proceeds differently without the addition of CF₃COOH. Thus, the reaction of the compounds **2b** with NaBH₄ (water, 50 °C) gives the product of the reduction of the aldehyde group of the acyclic isomeric form of **2b**, namely the N-(4-hydroxybut-2-yl)thiourea **9** (93% yield) (*Scheme 4*).

Thus, the first stage of the reactions studied is probably the generation of the acylimmonium cations from 2-4 in the presence of CF₃COOH. These cations are further subjected to nucleophilic attack at the C(4) position by the reducing agent, sodium tris(trifluoroacetoxy)hydroborate, formed by the reaction of NaBH₄ with CF₃COOH.

We proposed that it could be possible also to prepare six-membered cyclic thioureas by reduction of 4-substituted hexahydropyrimidine-2-thiones, bearing more easily leaving group at the C(4) position than hydroxy or alkoxy group, with NaBH₄ even in absence of CF₃COOH. Our preliminary investigations showed that 4-azido-, 4-acetoxy and 4-arylsulfonylhexahydropyrimidine-2-thiones can readily react with various nucleophiles under mild reaction conditions to produce the corresponding 4-substituted products [6]. Thus we studied reactions of the above mentioned compounds with NaBH₄.

We found that the 4-azidohexahydropyrimidine-2-thiones **10a-d** readily react with NaBH₄ in acetonitrile or DMFA at r.t. to afford the compounds **1a-c,i** in 89-100 % isolated yields. Reduction of 4-acetoxyhexahydropyrimidine-2-thiones **11a,b** and 4-phenylsulfonylhexahydropyrimidine-2-thione **12** with NaBH₄ in acetonitrile proceeds also easily and gives the compounds **1b,c** (*Scheme 5*).

The starting azidopyrimidines **10a-d** and phenylsulfonylpyrimidine **12** are obtained by reaction of the corresponding hydroxypyrimidines **2a-c,g** with hydrazoic acid or bensenesulfinic acid in water (r.t., 24 h) in yields more than 90 %. The acetoxypyrimidines **11a,b** are produced in 81-85 % yields by treatment of **2b,c** with Ac₂O in pyridine (r.t., 12 h).

Conclusion

Thus the present work shows that six-membered cyclic thioureas can be easily prepared according to two general procedures. The first route is stereoselective and includes direct reduction of readily available 4-hydroxy(or 4-alkoxy)hexahydropyrimidine-2-thiones and 1,2,3,4-tetrahydropyrimidine-2-thiones with NaBH₄ - CF₃COOH. The second procedure lies in synthesis of 4-azido-, 4-acetoxy- or 4-arylsulfonylhexahydropyrimidine-2-thiones followed

by their reduction with NaBH4. Both the methods are very flexible. They give possibility to prepare not only a large number of cyclic thioureas but also related compounds, such as cyclic ureas, cyclic dithiocarbamates, etc.

References

1. Bogatskii, A.V.; Luk'yanenko, N.G.; Kirichenko, T.I. *Khim. Geterotsicl. Soedin.* (Rus), 1983, 723 and references cited therein.

2. Sharma, S.D.; Arora, S.K.; Mehra, U. *Indian J. Chem.*, **1985**, *24*, 895; Chadha, V.K. *J. Indian Chem. Soc.*, **1977**, *54*, 878; Arya, V.P.; Shenoy, S.J. *Indian J. Chem.*, 1976, 14, 759; Chaudhary, H.S.; Pujari, H.K. *ibid*, **1972**, *10*, 766.

3. Ignatova, L.A.; Shutalev, A.D.; Shingareeva, A.G.; Dymova, S.F.; Unkovskii, B.V. *Khim. Geterotsikl. Soedin.* (Rus), **1985**, 260; Shutalev, A.D.; Ignatova, L.A.; Unkovskii, B.V. *ibid*, **1984**, 548; Zigeuner, G.; Galatik, W.; Lintschinger, W.-B.; Wede, F. *Monatsh. Chem.*, **1975**, *106*, 1219; Ovechkin, P.L.; Ignatova, L.A.; Unkovskii, B.V. *Khim. Geterotsikl. Soedin.*, **1972**, 941; Zigeuner, G.; Frank, A.; Dujmovits, H.; Adam, W. *Monatsh. Chem.*, **1970**, *101*, 1415; Unkovskii, B.V.; Ignatova, L.A.; Zaitseva, M.G. *Khim. Geterotsikl. Soedin.* (Rus), **1969**, 889; Zimmermann, R.; Brahler, B.; Hotze, H. *Pat. 1065849 BRD* (**1961**).

4. Shutalev, A.D.; Alekseeva, S.G. *Khim. Geterotsikl. Soedin.* (Rus), **1995**, 377; Shutalev, A.D.; Pagaev, M.T.; Ignatova, L.A. *ibid*, **1994**, 1093; Shutalev, A.D.; Komarova, E.N.; Pagaev, M.T.; Ignatova, L.A. *ibid*, **1993**, 1259; Shutalev, A.D.; Ignatova, L.A. *ibid*, **1991**, 228; Ignatova, L.A.; Shutalev, A.D.; Pagaev, M.T.; Unkovskii, B.V. *ibid*, **1988**, 234.

5. Gribble, G.W.; Nutaitis, C.F. Org. Prep. Proced. Intern. 1985, 17, 317.

6. Shutalev, A.D. *Khim. Geterotsikl. Soedin.* (Rus), **1993**, 1389; Shutalev, A.D.; Komarova, E.N.; Pagaev, M.T.; Ignatova, L.A. *ibid*, **1993**, 1259; Shutalev, A.D.; Ignatova, L.A. *ibid*, **1991**, 228; Shutalev, A.D.; Ignatova, L.A.; Unkovskii, B.V. *ibid*, **1990**, 133.

All comments on this poster should be sent by e-mail to (mailto:ecsoc@listserv.ariz ona.edu) <u>ecsoc@listserv.arizona.edu</u> with **A0040** as the message subject of your e-mail.