[C0005]

Synthesis of some anilides of 2-alkylsulfanyl- and 2-chloro-6-alkylsulfanyl-4-pyridinecarboxylic acids and their photosynthesis-inhibiting activity

Miroslav Miletin^{1a}*, Martin Dolezal¹, Jiri Hartl¹, Katarina Kralova², Milos Machacek³

¹ Department of Medicinal Chemistry and Drug Control, Charles University, <u>Faculty of Pharmacy</u>, 500 05 Hradec Kralove, Czech Republic

^a e-mail: <u>miletin@faf.cuni.cz</u>, tel. +420 49 5067387, fax +420 49 5512423

² Institute of Chemistry, <u>Faculty of Natural Sciences</u>, Comenius University, Bratislava, Slovak Republic

³ Department of Inorganic and Organic Chemistry, Charles University, <u>Faculty of Pharmacy</u>, 500 05 Hradec Kralove, Czech Republic

* Author to whom correspondence should be addressed.

Received: 16 August 1999 / Uploaded: 21 August 1999

Abstract: A group of anilides of 2-alkylsulfanyl- (*I*) or 2-chloro-6-alkylsulfanyl-4-pyridinecarboxylic acids (*II*) was synthesised. The prepared compounds were tested for inhibition of photosynthesis upon oxygen evolution rate in spinach chloroplasts. The IC₅₀ values varied in the range of 6.0--69.1 μ mol.dm⁻³ for *I* and 14.2--32.5 μ mol.dm⁻³ for *II*. The inhibitory activity of *I* and *II* showed a quasi-parabolic dependence upon the lipophilicity (log P) of the compounds. For compounds with comparable lipophilicity the presence of chloro substituent in position 2 of the pyridine moiety led to the decrease of inhibitory activity.

Keywords: 2-Alkylsulfanyl-4-pyridinecarboxylic acids; Anilides; Photosynthesis inhibition.

Introduction

Studies of relationship between the chemical structure and biological activity have shown that number of herbicides acting as photosynthesis inhibitors possess in their molecules an >N-C(=X)- group, where X = O or N, not S, and a hydrophobic moiety in close vicinity to this group [1,2]. According to Shipman [3,4] the hydrophilic part of a herbicide binds electrostatically to the terminus of an alfa-helix at a highly charged amino acid, whereby the hydrophobic part of the inhibitors extends into the hydrophobic part of the membrane. Recently, pronounced photosynthesis-inhibiting activity has been reported for alkoxysubstituted phenylcarbamates [5,6], as well as for the local anesthetic of anilide type -- trimecaine [7,8,9], i. e., for compounds with -CONH- group in their molecules.

Continuing our previous work on anilides of 2-alkyl-4-pyridinecaboxylic acids [10], we report the results of photosynthesis-inhibiting activity of new anilides of 2-alkylsulfanyl-4-pyridinecarboxylic (*I*) acids and 2-chloro-6-

alkylsulfanyl-4-pyridinecarboxylic acids (II).

Results and Discussion

The synthesis of anilides is shown in Schemes 1 and 2.

Starting from 2-chloro-4-cyanopyridine, 2-alkylsulfanyl-4-cyanopyridines were synthesised as described previously [11]. Subsequent treatment with ethanolic sodium hydroxide solution afforded corresponding acids **1-4**. The acids were converted directly to anilides via the corresponding acyl chlorides (Scheme 1) by reaction with substituted anilines or aminophenols (Fig. 1).

The reaction of 2,6-dichloro-4-amidopyridine with the appropriate thiolate gave the corresponding 2-chloro-6alkylsulfanyl-4-amidopyridines [12], which were subsequently hydrolyzed to 2-chloro-6-alkylsulfanyl-4pyridinecarboxylic acids **5** and **6**. The anilides were prepared from the acids in a manner analogous to that described above (Scheme 2).

The melting points, yields, and elemental analyses for the compounds prepared are given in Tables 1 and 2, and the IR and ¹H NMR spectral data in Tables 3 and 4.

1b,d; 2b,f; 3a,b,d-f; 4a,b,e,f

Scheme 1: Preparation of 2-alkylsulfanyl-4-pyridinecarboxylic acids and related anilides (*I*). i) Na^{+ -}SR; ii) NaOH; iii) HCl; iv) SOCl₂; v) substituted aniline

Scheme 2: Preparation of 2-chloro-6-alkylsulfanyl-4-pyridinecarboxylic acids and related anilides (*II*). i) NaOH; ii) HCl; iii) SOCl₂; iv) substituted aniline

Fig. 1: Aminophenols and anilines used.

Biological activity of anilides of 2-alkylsufanyl-4-pyridinecarboxylic acids (*I*) and 2-chloro-6- alkylsulfanyl-4-pyridinecarboxylic acids (*II*) concerning inhibition of oxygen evolution rate in spinach chloroplasts was investigated. The inhibitory activity of the compounds has been expressed as IC_{50} values (Table 5). The IC_{50} values varied in the range of 6.0--69.1 µmol.dm⁻³ for the compounds *I* and 14.2--32.5 µmol.dm⁻³ for the compounds *I*.

The inhibitory activity of *I* and *II* showed a quasi-parabolic dependence upon the lipophilicity (log P) of the compounds. The comparison of the biological activity of compounds *I* and *II* having the same lipophilicity showed that the introduction of halogeno substituent in the position 6 led to a partial decrease of the biological activity. The previous study with anilides of 2-alkyl-4-pyridinecarboxylic acids showed that the site of their inhibitory action is the intermediate Z^+/D^+ corresponding to the tyrosine radicals Tyr_Z and Tyr_D which are situated at 161th position in D₁ and D₂ proteins located on the donor side of photosystem (PS) 2 [13]. The same site of action in the photosynthetic apparatus of spinach chloroplasts can be expected also for the studied compounds *I* and *II*. From the quasi-parabolic course of the dependence log (1 / IC₅₀) vs. log P it can be assumed that the most active inhibitors are compounds with sufficiently high lipophilicity for securing their passage through the lipidic parts of the biological membranes, but enabling also their sufficiently high concentration in the aqueous phase. This is necessary for their interaction with the intermediates Z^+/D^+ situated at the lumenal side of photosynthetic membranes in D₁ and D₂ proteins.

X N SR COOH								
Compd.	Formula M. w.	R X	M. p. °C Yield %		% (Calcu 6 Fou	lated nd	
				C	Η	Ν	S	Cl
1	C ₉ H ₁₁ NO ₂ S 197.3	С ₃ H ₇ Н	141143 80	54.80 54.55	5.62 5.79	7.10 6.95	16.25 16.08	
2	C ₁₀ H ₁₃ NO ₂ S 211.3	iC ₄ H ₉ Н	137139 78	56.85 56.61	6.20 6.41	6.63 6.46	15.17 14.93	
3	C ₁₁ H ₁₅ NO ₂ S 225.3	С ₅ H ₁₁ Н	135137 82	58.64 58.48	6.71 6.89	6.22 6.05	14.23 14.02	
4	C ₁₃ H ₁₁ NO ₂ S 245.3	CH ₂ C ₆ H ₆ H	196197 ^{a)} 76					
5	C ₉ H ₁₀ ClNO ₂ S 231.7	C ₃ H ₇ Cl	119120 77	46.66 46.45	4.35 4.21	6.05 6.19	13.84 13.65	15.30 15.55
6	C ₁₀ H ₁₂ CINO ₂ S 245.7	C ₄ H ₉ Cl	9395 75	48.88 48.67	4.92 4.85	5.70 5.82	13.05 12.87	14.43 14.65

 Table 1. Analytical data of the prepared 2-alkylsulfanyl- and 2-chloro-6-alkylsulfanyl-4-pyridinecarboxylic acids.

a) Ref. [14] m. p. 195--196°C)

		Z N C	ONH-	$\langle \overset{Y}{\bigoplus} \overset{X^1}{x^2}$					
Compd.	Formula M. w	R X Z	X^1	M. p. °C Vield %		%	Calc % Fo	ulated ound	
	1 v1 . w.	1, 2	X²	11010 /0	С	Η	Ν	S	Cl(Br,F)
1b	C ₁₅ H ₁₅ ClN ₂ O ₂ S 322.8	SC ₃ H ₇ 2'-OH, H	5'-Cl H	161163 57	55.81 55.96	4.68 4.52	8.68 8.49	9.93 10.06	10.98 10.76
1d	$\begin{array}{c} C_{15}H_{14}Br_{2}N_{2}O_{2}S\\ 446.2 \end{array}$	SC ₃ H ₇ 4'-OH, H	3'-Br 5'-Br	152153 65	40.38 40.41	3.16 3.23	6.28 6.22	7.19 7.12	35.82 35.71
	C ₁₆ H ₁₇ ClN ₂ O ₂ S	S- <i>i</i> C ₄ H ₉	5'-Cl	162164	57.05	5.09	8.32	9.52	10.53

2b	336.8	2'-ОН, Н	Н	58	57.11	5.07	8.27	9.56	10.45
2f	$\begin{array}{c} C_{18}H_{16}F_{6}N_{2}OS \\ 422.4 \end{array}$	S- <i>i</i> C ₄ H ₉ Н, Н	3'-CF ₃ 5'-CF ₃	164165 54	51.18 51.31	3.82 3.72	6.63 6.48	7.59 7.75	26.99 26.78
3 a	C ₁₇ H ₂₀ N ₂ O ₂ S 316.4	SC ₅ H ₁₁ 2'-OH, H	H H	123125 60	64.53 64.48	6.37 6.45	8.85 8.71	10.13 10.28	
3b	C ₁₇ H ₁₉ ClN ₂ O ₂ S	SC ₅ H ₁₁	5'-Cl	153155	58.19	5.46	7.98	9.14	10.10
	350.9	2'-OH, H	H	58	58.23	5.39	7.88	9.19	10.01
3d	$C_{17}H_{18}Br_2N_2O_2S$	SC ₅ H ₁₁	3'-Br	120122	43.06	3.83	5.91	6.76	33.70
	474.2	4'-OH, H	5'-Br	67	43.15	3.81	5.77	6.67	33.50
3 e	C ₁₇ H ₁₉ BrN ₂ OS	SC ₅ H ₁₁	4'-Br	9495	53.83	5.05	7.39	8.45	21.07
	379.3	Н, Н	H	52	53.97	4.93	7.23	8.31	20.88
3f	C ₁₉ H ₁₈ F ₆ N ₂ OS	SC ₅ H ₁₁	3'-CF ₃	122124	52.29	4.16	6.42	7.35	26.12
	436.4	Н, Н	5'-CF ₃	56	52.16	4.21	6.36	7.21	25.95
4a	C ₁₉ H ₁₆ N ₂ O ₂ S 336.4	SCH ₂ C ₆ H ₅ 2'-ОН, Н	H H	149150 60	67.84 67.57	4.79 4.97	8.33 8.09	9.53 9.75	
4b	C ₁₉ H ₁₅ ClN ₂ O ₂ S	SCH ₂ C ₆ H ₅	5'-Cl	194196	61.54	4.08	7.55	8.66	9.56
	370.9	2'-ОН, Н	H	78	61.65	3.86	7.41	8.72	9.38
4 e	C ₁₉ H ₁₅ BrN ₂ OS	SCH ₂ C ₆ H ₅	4'-Br	108109	57.15	3.79	7.02	8.03	20.01
	339.3	Н, Н	H	55	57.31	3.71	6.87	8.14	19.85
4f	$\begin{array}{c} C_{21}H_{14}F_{6}N_{2}OS \\ 456.4 \end{array}$	SCH ₂ C ₆ H ₅ H, H	3'-CF ₃ 5'-CF ₃	141143 61	55.26 55.38	3.09 3.01	6.14 6.03	7.02 7.18	24.98 24.75
5a	C ₁₅ H ₁₅ ClN ₂ O ₂ S	SC ₃ H ₇	H	138139	55.81	4.68	8.68	9.93	10.98
	322.81	2'-OH, Cl	H	44	55.68	4.51	8.79	9.72	11.21
5b	C ₁₅ H ₁₄ Cl ₂ N ₂ O ₂ S	SC ₃ H ₇	5'-Cl	152153	50.43	3.95	7.84	8.97	19.85
	357.25	2'-OH, Cl	H	53	50.33	3.91	7.72	8.85	20.07
5c	C ₁₅ H ₁₄ Cl ₂ N ₂ O ₂ S	SC ₃ H ₇	3'-Cl	144146	50.43	3.95	7.84	8.97	19.85
	357.25	4'-OH, Cl	H	34	50.29	3.86	7.95	8.81	20.03
6a	C ₁₆ H ₁₇ ClN ₂ O ₂ S	SC ₄ H ₉	H	123125	57.05	5.09	8.32	9.52	10.53
	336.84	2'-OH, Cl	H	56	56.91	5.02	8.48	9.39	10.79
6b	$\frac{C_{16}H_{16}Cl_2N_2O_2S}{371.28}$	SC ₄ H ₉ 2'-OH, Cl	5'-Cl H	158160 59	51.76 51.58	4.34 4.31	7.55 7.68	8.63 8.41	19.10 19.31
6c	C ₁₆ H ₁₆ Cl ₂ N ₂ O ₂ S	SC ₄ H ₉	3'-Cl	115117	51.76	4.34	7.55	8.63	19.10
	371.28	4'-OH, Cl	H	53	51.63	4.23	7.71	8.38	19.33

 Table 3. IR and ¹H NMR spectral data of the 2-alkylsulfanyl and 2-chloro-6-alkylsulfanyl-4-pyridinecarboxylic acids (DMSO).

Compd.	IR (cm ⁻¹)	delta ¹ H NMR (ppm)

1	2975, 2935, 2890 (CH-aliph.) 2480 (COOH) 1725 (CO)	a)
2	2960, 2930, 2870 (CH-aliph.) 2470 (COOH) 1725 (CO)	a)
3	2970, 2925, 2860 (CH-aliph.) 2450 (COOH) 1730 (CO)	a)
5	2970, 2934, 2874 (CH-aliph.) 2658 (COOH) 1705 (CO)	11.65 s, 1H, COOH; 7.67 d, J=0.7 Hz, 1H, H-3; 7.54 d, J=0.7 Hz, 1H, H-5; 3.18 t, J=7.1 Hz, 2H, CH ₂ S; 1.47-2.10 m, 2H, CH ₂ ; 1.05 t, J=7.2 Hz, 3H, CH ₃
6	2962, 2933, 2873 (CH-aliph.) 2541 (COOH) 1707 (CO)	11.62 s, 1H, COOH; 7.66 d, J=1.1 Hz, 1H, H-3; 7.53 d, J=1.1 Hz, 1H, H-5; 3.20 t, J=7.1 Hz, 2H, CH ₂ S; 1.21-1.98 m, 4H, CH ₂ ; 0.96 t, J=6.2 Hz, 3H, CH ₃

a) $^1\mathrm{H}$ NMR spectra of 2-alkylsulfanyl-4-pyridinecarboxylic acids were not measured.

Table 4. IN and TI WIN spectral data of the prepared annues.	Table 4. IR and	¹ H NMR spectral	data of the prepared	anilides.
--	-----------------	-----------------------------	----------------------	-----------

Compd.	$\operatorname{IR}_{(\mathrm{cm}^{-1})}$	delta ¹ H NMR
		1.00 t, J=7, 3H, CH ₃ ; 1.66 m, 2H, CH ₂ ; 3.18 t, J=7, 2H, SCH ₂ ; 6.93 d, J=8.5,
1b 2965, 2932, 2873 (CH aliph.) 1651 (CO)		1H, H-3'; 7.12 dd, J=8.5, J=2.4, 1H, H-4'; 7.53 dd, J=5.1, J=1.5, 1H, H-5; 7.73 qs, 2H, H-3 and H-6'; 8.60 d, J=5.1, 1H, H-6; 9.82 s, 1H, OH or NH; 10.08 s, 1H, NH or OH
1d	2975, 2945, 2890 (CH aliph.) 1650 (CO)	1.00 t, J=7, 3H, CH ₃ ; 1.75 m, 2H, CH ₂ ; 3.18 t, J=7, 2H, SCH ₂ ; 7.52 d, J=5.1, 1H, H-5; 7.71 s, 1H, H-3; 8,00 s, 2H, H-2'and H-6'; 8.62 d, J=5.1, 1H, H-6; 10.45 s, 1H, OH or NH; 10.51 s, 1H,NH or OH
2b	2975, 2940, 2890 (CH aliph.) 1655 (CO)	1.01 d, J=7, 6H, 2xCH ₃ ; 1.92 m, 1H, -CH<; 3.13 t, J=7.5, 2H, SCH ₂ ; 6.95 d, J=8.5, 1H, H-3'; 7.13 dd, J=8.5, J=2.5, 1H, H-4'; 7.52 dd, J=5, J=1, 1H, H-5; 7.73 dd, J=1, J<1, 1H, H-3; 7.74 d, J=2.5, 1H, H-6'; 8.59 dd, J=5, J<1, 1H, H-6
2f	2962, 2929, 2869 (CH aliph.) 1662 (CO)	(CDCl ₃) 1.05 d, J=6.4, 6H, 2xCH ₃ ; 1.94 m, 1H, CH; 3.14 d, J=6.7, 2H, SCH ₂ ; 7.31 dd, J=5.2, J=1.5, 1H, H-5; 7.55 d, J=1.5, 1H H-3; 7.68 s, 1H, H- 4'; 8.17 s, 3H, H-2', H-6' and NH; 8.57 d, J=5.2, 1H, H-6
3 a	2958, 2931, 2859 (CH aliph.) 1652 (CO)	0.88 dist.t, CH ₃ ; 1.38 m, 4H, 2xCH ₂ ; 1.66 m, 2H, CH ₂ ; 3.19 t, 2H, CH ₂ ; 6.96 m, 3H, arom.; 7.55 m, 2H, H-5 and 1H arom.; 7.74 s, 1H, H-3; 8.59 d, J=5.1, 1H, H-6; 9.66 s, 1H, OH; 9.77 bs, 1H, NH
3b	2975, 2940, 2870 (CH aliph.) 1640 (CO)	0.88 dist. t, 3H, CH ₃ ; 1.36 m, 4H, (CH ₂) ₂ ; 1.63 m, 2H, CH ₂ ; 3.20 t, J=7, 2H, SCH ₂ ; 7.13 dd, J=8.5, J=2.5, 1H, H-4'; 7.53 dd, J=5, J=1.5, 1H, H-5; 7.72 dd, J=1.5, J=1, 1H, H-3; 7.75 d, J=2.5, 1H, H-6'; 8.61 dd, J=5, J=1, 1H, H-6
	2980, 2945, 2875 (CH aliph.)	0.88 dist. t, 3H, CH ₃ ; 1.37 m, 4H, (CH ₂) ₂ ; 1.66 m, 2H, CH ₂ ; 3.19 t, J=7, 2H,

3d	1655 (CO)	SCH ₂ ; 7.52 d, J=5.1, 1H, H-5; 7.71 s, 1H, H-3; 8,00 s, 2H, H-2'and H-6';
	1055 (CO)	8.61 d, J=5.1, 1H, H-6; 9.84 s, 1H, OH or NH; 10.44 s, 1H, NH or OH
		(CDCl ₃) 0.91 dist. t, 3H, CH ₃ ; 1.38 m, 4H 2xCH ₂ ; 1.71 m, 2H, CH ₂ ; 3.19 t,
3e	2952, 2926, 2852 (CH aliph.)	J=7, 2H, SCH ₂ ; 7.27 dd, J=5, J=1.5, 1H, H-5; 7.49 qs, 5H, H-3 and C ₆ H ₄ ;
	1050 (CO)	8.01 bs, 1 H, NH; 8.52 d, J=5, 1H, H-6
		(CDCl ₃) 0.91 dist. t, 3H, CH ₃ ; 1.38 m, 4H, 2xCH ₂ ; 1.71 m, 2H, CH ₂ ; 3.22 t,
3f	2958, 2930, 2858 (CH aliph.)	J=7, 2H, SCH ₂ ; 7.32 dd, J=5.2, J=1.5, 1H, H-5; 7.55 d, J=1.5, 1H, H-3; 7.68
	1007 (00)	s, 1H, H-4'; 8.17 qs, 3H, H-2', H-6'and NH; 8.58 d, J=5.2, 1H, H-6
4 a	1660 (CO)	a)
4b	1655 (CO)	a)
		(CDCl ₃) 4.45 s, 2H, SCH ₂ ; 7.31 m, 6H, H-5 and C ₆ H ₅ ; 7.45 qs, 5H, H-3 and
4 e	1653 (CO)	C ₆ H ₄ ; 7.98 bs, 1 H, NH; 8.53 d, J=5.2, 1H, H-6
		(CDCl ₃) 4.46 s, 2H, SCH ₂ ; 7.36 m, 7H, H-3, H-5 and C ₆ H ₅ ; 7.67 s, 1H, H-
4 f	1668 (CO)	4'; 8.10 s, 2H, H-2'and H-6'; 8.24 bs, 1 H, NH; 8.57 d, J=5.2, 1H, H-6
		1.06 t, J=7.2 Hz, 3H, CH ₃ ; 1.49-2.01 m, 2H, CH ₂ ; 3.19 t, J=7.1 Hz, 2H,
5a	2964, 2931, 2873 (CH aliph.) 1647 (CO)	CH ₂ S; 6.72-7.24 m, 3H, H-4', H-5', H-6'; 7.35 d, J=1.2 Hz, 1H, H-5; 7.37-
		7.64 m, 2H, -NH-, H-3'; 7.64 d, J=1.2 Hz, 1H, H-3; 8,23 s, 1H, OH
		0.86-1.33 m, 3H, CH ₃ ; 1.50-2,02 m, 2H, CH ₂ ; 3.20 t, J=7.2 Hz, 2H, CH ₂ ;
5h	2965, 2931, 2872 (CH aliph.)	6.90 d, J=8.5 Hz, 1H, H-3'; 7.00-7.23 m, 1H, NH; 7.10 dd, J ₁ =2.2 Hz, J ₂ =8.5
50	1655 (CO)	Hz, 1H, H-4'; 7.34 d, J=1.2 Hz, 1H, H-5; 7.46 d, J=1.2 Hz, 1H, H-3; 7.69 d,
		J=2.2 Hz, 1H, H-6'; 8.18 s, 1H, -OH
		0.90-1.18 m, 3H, CH ₃ ; 1.46-2.04 m, 2H, CH ₂ ; 3.18 t, J=7.1 Hz, CH ₂ ; 5.57 s,
5c	2965, 2931, 2872 (CH aliph.	1H, NH; 6.98 d, J=8.8 Hz, 1H, H-5'; 7.28 dd, J_1 =2.4 Hz, J_2 =8.8 Hz, 1H, H-
	1654 (CO)	6'; 7.29 d, J=1.2 Hz, 1H, H-5; 7.41 d, J=1.2 Hz, 1H, H-3; 7.73 d, J=2.4 Hz,
		$\begin{array}{c} 1H, H-2, 7.85 \text{ s}, 1H, OH \\ \hline 0.78, 1.10 \text{ m}, 2H, OH + 1.5, 1.05 \text{ m}, 4H, OH, OH + 2.18 \text{ s}, 1.70 \text{ Hz}, 2H, OH + 1.50 \text{ Hz}, 2H, OH + 1.$
69	2958, 2931, 2872 (CH aliph.) 1646 (CO)	$0.78 - 1.10$ m, $3H$, CH_3 ; $1.5 - 1.95$ m, $4H$, CH_2CH_2 ; 5.18 l, $J = 7.0$ Hz, $2H$, CH_2 ; $6.70, 7.26$ m, $2H$, H , $4'$, H , $5'$, H , CH_2 ; 1.10 Hz, $1H$, H , $5'$, 7.42 d, $L = 1.2$
Va		Hz. 1H. H-3; 7.58 d. J=7.8 Hz. 1H. H-3'; 7.72 s. 1H. NH: 8.47 s. 1H. OH
		0.73-1.32 m, 3H, CH ₂ : 1.50-2.02 m, 4H, CH ₂ CH ₂ : 3.22 t, J=7.2 Hz, 2H,
	2959-2931, 2872 (CH aliph.)	CH_2 ; 6.90 d, J=8.3 Hz, 1H, H-3'; 7.00-7.23 m, 1H, NH; overlapping with
6b	1656 (CO)	7.10 dd, J ₁ =2.2 Hz, J ₂ =8.5 Hz, 1H, H-4'; 7.35 d, J=1.2 Hz, 1H, H-5; 7.45 d,
		J=1.2 Hz, 1H, H-3; 7.69 d, J=2.2 Hz, 1H, H-6'; 8.14 s, 1H, OH
		0.96 t, J=6.4 Hz, 3H, CH ₃ ; 1.14-1.93 m, 4H, CH ₂ CH ₂ ; 3.19 t, J=7.1 Hz,
6-	2959, 2930, 2872 (CH aliph.)	CH ₂ ; 5.62 s, H, NH; 7.27 dd, J ₁ =2.4 Hz, J ₂ =8.8 Hz, 2x1 H, H-5', H-6'; 7.29
6C	1649 (CO)	d, J=1.2 Hz, 1H, H-5; 7.40 d, J=1.2 Hz, 1H, H-3; 7.73 d, J=2.4 Hz, 1H, H-2';
		7.91 s, 1H, OH

a) $^{1}\mathrm{H}$ NMR spectra of the compounds were not measured

Table 5. IC_{50} values concerning inhibition of oxygen evolution rate in spinach chloroplasts by the tested compoundsand calculated logP values of the compounds.

-1

F

Compd	IC ₅₀	calculated log P
Compu.	$(\mu mol.dm^{-3})$	calculated log I
1b	7.3	4.55 ± 0.44
2b	8.0	4.90 ± 0.45
2f	13.9	6.79 ± 0.54
3 a	12.7	4.24 ± 0.42
3 b	4.8	5.62 ± 0.44
3d	11.3	6.66 ± 0.58
3f	69.1	7.50 ± 0.54
4a	10.3	3.75 ± 0.43
4 b	6.0	5.13 ± 0.46
4 f	35.2	7.01 ± 0.55
5a	32.5	4.03 ± 0.44
5b	14.2	5.41 ± 0.46
5c	16.2	4.64 ± 0.45
6a	19.7	4.57 ± 0.44
6b	18.3	5.94 ± 0.46
6c	14.2	5.17 ± 0.45

Experimental

General

The melting points were determined on a Kofler apparatus and are uncorrected. The IR spectra were recorded on a Nicolet Impact 400 spectrometer in chloroform; the wavenumbers are given in cm⁻¹. The ¹H NMR spectra were determined in CDCl₃ or DMSO solutions with TMS as the internal standard with a BS 587 (Tesla, Brno) 80 MHz apparatus. Column chromatography was performed on silica gel (Silpearl, Kavalier Votice). Elemental analyses were performed on an EA 1110 CHNS-O CE INSTRUMENTS elemental analyser.

Lipophilicity of the compounds was computed using a program ACD/LogP version 1.0 (Advanced Chemistry Development Inc., Toronto).

Synthesis of 2-alkylsulfanyl-4-cyanopyridines and 2-phenylmethylsulfanyl-4-cyanopyridine

2-Chloro-4-cyanopyridine (10 mmol) and appropriate thiol (10 mmol) were dissolved in 10 mL of anhydrous N,N-dimethylformamide. To the stirred solution, sodium methoxide (10 mmol) in of 5 mL methanol was added dropwise at 20 °C under a nitrogen atmosphere. The stirring continued until TLC (hexane : ethyl acetate, 6:1) indicated a complete reaction. The solvents were evaporated under reduced pressure and the 2-alkylsulfanyl-4-cyanopyridines or 2-phenylmethylsulfanyl-4-cyanopyridine were distilled off from the oily residue. The boiling points of the products were identical to those described previously [11].

Synthesis of 2-chloro-6-alkylsulfanyl-4-amidopyridines

2,6-Dichloro-4-amidopyridine [15] (10 mmol) and the appropriate thiol (10 mmol) were dissolved in anhydrous *N*,*N*-dimethylformamide (10 mL). To the stirred solution sodium methoxide (10 mmol) in methanol (5 mL) was added

dropwise. The reaction mixture was stirred at room temperature until TLC (hexane : ethyl acetate 2:1) indicated a complete reaction. The mixture was then poured into cold water. The crude product was filtered off, purified by column chromatography (hexane : ethyl acetate, 2:1), and crystallised from aqueous ethanol. The boiling points and spectral data of the products were identical to those described previously [12].

Synthesis of 2-alkylsulfanyl-, 2-phenylmethylsulfanyl- and 2-chloro-6-alkylsulfanyl-4-pyridinecarboxylic acids 1--6

2-alkylsulfanyl-4-cyanopyridine or 2-chloro-6-alkylsulfanyl-4-amidopyridine (10 mmol) in 10 mL of ethanol was mixed with 25% aqueous solution of sodium hydroxide (30 mmol) and refluxed until the evolution of the ammonia ceased. Reaction mixture was then diluted with twice as high volume of water and acidified with 10% hydrochloric acid to pH 4--5. The crude product was collected, washed with water, and crystallised from aqueous ethanol. TLC for checking of the purity of final products was performed using hexane -- ethyl acetate -- acetic acid (50:45:5) as the mobile phase. The yields, melting points, and elemental analyses are given in Table 1, IR spectral data and ¹H NMR chemical shifts in Table 3.

Synthesis of anilides of 2-alkylsulfanyl, 2-phenylmethylsulfanyl and 2-chloro-6-alkylsulfanyl-4-pyridinecarboxylic acids **1b,d**; **2b,f**; **3a,b,d-f**; **4a,b,e,f**; **5a-c**; **6a-c**

A mixture of 2- or 2,6 substituted-4-pyridinecarboxylic acid (10 mmol) and thionyl chloride (15 mmol) in 10 mL of dry benzene was refluxed for about 1 h. Excess of thionyl chloride was removed by repeated evaporation of dry benzene in vacuo. Crude acyl chloride dissolved in 10 mL of dry acetone was added dropwise to a stirred solution of substituted aniline or aminophenol (10 mmol) in 10 mL of dry pyridine keeping the temperature at 10 °C. After addition of aniline or aminophenol was complete, stirring at 10 °C continued for another 30 min. Using aminophenol as a reagent, the low temperature was essential in order to avoid the partial esterification of acyl chloride. The reaction mixture was poured into 40 mL of cold water. Crude anilide was collected and crystallised from aqueous ethanol. TLC was performed in hexane -- ethyl acetate (50:50) as the mobile phase. The yields, melting points and elemental analyses of anilides are given in Table 2, IR spectral data and ¹H NMR chemical shifts in Table 4.

Biological assays

The oxygen evolution rate (OER) in spinach chloroplasts was determined spectrophotometrically (Specord UV VIS Zeiss Jena, Germany) by the Hill reaction. The measurements were carried out in phosphate buffer (20 mmol, pH = 7.2) containing sucrose (0.4 mol.dm⁻³), MgCl₂ (5 mmol.dm⁻³), and NaCl (15 mmol.dm⁻³) using 2,6-dichlorophenolindophenol as electron acceptor. Chlorophyll content in the samples was 30 mg.dm⁻³ and the samples were irradiated (~ 100 W.m⁻²) from 10cm distance with a halogen lamp (250 W) using a water filter to prevent warming of the samples (suspension temperature 22 °C). The compounds were dissolved in dimethyl sulfoxide (DMSO) because of their limited water solubility. The applied DMSO concentration (up to 5 %) did not affect OER.

Acknowledgements. This study was supported by the Grant Agency of Charles University (Grant No. 26/1998) and by Scientific Grant Agency of Ministry of Education, Slovak Republic (grant No. 1/4013/97). Authors thank to Tomas Vojtisek for transformation of the poster into html format.

References

- 1. Harth E., Oettmeier W., Trebst A.: FEBS Lett. 1974, 43, 231.
- 2. Hauska G. A., Oettmeier W., Reimer S., Trebst A.: Z. Naturforsch. 1975, 30c, 37.
- 3. Shipman L. L.: J. Theor. Biol. 1981, 90, 123.

4. Shipman L. L. in: *Biochemical Responses Induced by Herbicides* (D. E. Moreland, J. B. St. John, and F.D. Hess, Editors), p. 23. ACS Symposium Series 181. Washington, **1982**.

5. Kralova K., Sersen F., Cizmarik J.: Gen. Physiol. Biophys. 1992, 11, 261.

6. Kralova K., Bujdakova H., Cizmarik J.: Pharmazie 1995, 50, 440.

7. Sersen F., Kralova K.: Gen. Physiol. Biophys. 1994, 13, 329.

8. Semin B. K., Chudinovskikh M. N., Ivanov I. I.: Biokhimiya 1987, 52, 1279.

9. Semin B. K., Chudinovskikh M. N., Ivanov I. I.: Gen. Physiol. Biophys. 1989, 9, 233.

10. Miletin M., Hartl J., Machacek M.: Collect. Czech. Chem. Commun. 1997, 62, 672.

11. Klimesova V., Otcenasek M., Waisser K.: Eur. J. Med. Chem. 1996, 31, 389.

12. Miletin M., Hartl J., Dolezal M., Odlerova Z., Kralova K., Machacek M.: Synthesis of some 2,6- disubstituted 4-pyridinecarboxamides and -carbothioamides, and their antimycobacterial and photosynthesis-inhibiting activity. *International Electronic Conference on Synthetic Organic Chemistry* (*ECSOC-2*), September 1-30, **1998**, <u>c0001</u>.

13. Kralova K., Sersen F., Miletin M., Hartl J.: Chem. Papers 1998, 52, 52.

14. Itai, Sekiima: Bl. Nation. Hyg. Labor. Tokyo 1956, 74, 119; in Chem. Abstr. 1957, 8740.

15. Levelt, W.H., Wibaut, J.P.: Rec. Trav. Chim. Pays-Bas 1929, 48, 466.

All comments on this poster should be sent by e-mail to (mailto:ecsoc@listserv.ariz ona.edu) ecsoc@listserv.arizona.edu with C0005 as the message subject of your e-mail.