

The 3rd International Electronic Conference on Processes 29–31 May 2024 | Online

Mechanisms of biodeterioration of structural materials by

Streptomyces spp.: a review

Nataliia Tkachuk ^{1,*} and Liubov Zelena ^{2,3}

¹Department of Biology, T.H. Shevchenko National University "Chernihiv Colehium", Chernihiv, Ukraine ²Department of Virus Reproduction of the Danylo Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Kyiv, Ukraine

³Department of Biotechnology, Leather and Fur of the Kyiv National University of Technologies and Design, Kyiv, Ukraine

INTRODUCTION & AIM

The processes of biodegradation of materials, harmful from the point of view of practical human activity, are considered as their biodamage, which should be prevented and eliminated. Sulfate-reducing and thione bacteria are considered the main corrosively active groups of microorganisms. Streptomycetes are considered as heterotrophic bacteria-companions of the main groups of material damagers. To summarize results of available scientific researches and reviews devoted to the participation and supposed mechanisms of structural materials biodamage, caused by streptomycetes, the presented study was performed.

Table	Table 2. Anticorrosion and antibiofouling activity of streptomycetes						
Protective activity	Species (compound)	Researched construction material	References				
Non-viable and fully developed biofilm	<i>S. lividans</i> strain TK24	SAE 1018 steel	Jayaraman et al., 1997a; Jayaraman et al., 1997b				
Anticorrosion and/or antimicrobial/ antibiofouling compounds	S. griseus (albomycin)	zinc	Okon, 2010				
	Streptomyces sp.	steel	lgnatova-Ivanova et al., 2015				
	Streptomyces sp. (amino acids: phenylalanine, proline; polysaccharides)	X65 steel	Wang et al., 2023a				
	Streptomyces sp.	X65 steel	Wang et al., 2023b				
	<i>S. parvus</i> strain BSB49 (eumelanin)	mild steel	Bayram et al., 2022				
	<i>S. fungicidicus</i> (diketopiperazines)	Not used (methods without the use of construction materials)	Adetunji et al., 2021				
	<i>S. albidoflavus</i> strain UST040711-291 (a group of simple butenolides)	polyvinyl chloride	Stainsby et al., 2022				
	<i>S. filamentosus</i> strain R1 (requinomycin)	the glass slides	Xu et al., 2009				
	Streptomyces sp. strain VITSDSB (the combination of cultural extract and zirconium oxide nanoparticles)	steel	Li et al., 2006				
	Streptomyces sp. (tetracyclines, macrolides, lincosamides, aminoglycosides)	not specified	Gece, 2011				
	<i>S. lunalinharesii</i> strain 235	not used (methods without the use of construction materials)	Pacheco da Rosa et al., 2013; Rosa et al., 2016				
	<i>S. naganishii</i> strain MA7 (silver nanoparticles)	not specified	Shanmugasundaram et al., 2013				

RESULTS & DISCUSSION

Table 1. Corrosion activity of streptomycetes

Cause of corrosion activity	Species (compound)	Researched constructio material		References
Powerful biofilm	<i>S. parvus</i> strain B7	carbon stee stainless ste	·	Parthipan et al., 2018b
Poor biofilm	<i>S. lividans</i> strain TK23.1	SAE 1018 steel		Jayaraman et al., 1997a; Jayaraman et al., 1997b
	<i>S. pilosus</i> strain DSM40714	mild steel 37/AISI 10-18		Volkland et al., 2000
Changes in electrochemical parameters	Streptomyces sp.	steel A3		Li et al., 2010
Production of	S. gardneri strain ChNPU F3, S. canus strain NUChC F2 (ammonia)	steel		Tkachuk & Zelena, 2021
corrosive compounds	Streptomyces sp. (sulfuric acid)	concrete		Vupputuri et al., 2015; Nasrazadani et al., 2016
	Streptomyces sp. (organic acids)	X65 steel		Wang et al., 2023a
Biodegradation of corrosion inhibitors	Streptomyces sp.	benzimidazo coated mild st		Hussain et al., 2021
	F •			
Corrosion activ	ectrochemical eters ompounds n of inhibitors	Figure 1.Mechanismsofparticipationofstreptomycetesinbiodeteriorationof		
Strep Corrosion/biof ling preventio		ion and/or		ictural materials.
activity	CONTACT nataliia.smykun@gmail.com zelenalyubov@gmail.com			

CONCLUSION

It is shown that representatives of the genus *Streptomyces* can influence the process of biodamage of structural materials in 4 possible ways. At the same time, the mechanisms of streptomycetes involvement in the processes of microbial damage to metals and their consequences (intensification or weakening of corrosion) are ambiguous and are determined by the peculiarities of the physiology of the studied species or strains and the presence of microorganisms of other species. Further studies on streptomycetes as participants in the corrosion process with special attention to their production of secondary metabolites and nanoparticles with antimicrobial and inhibitory properties are necessary, which will contribute to the expansion of the list of "green" biocides/inhibitors.

https://ecp2024.sciforum.net/