Exploring the Dynamics of Natural Sodium Bicarbonate, Sodium Carbonate, and Black Ash in Spray Dry SO₂ Capture.

Robert Makomere^{1,*}, Lawrence Koech¹, Hilary Rutto¹, Alfayo Alugongo².

¹Clean Technology and Applied Materials Research Group, Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark, Gauteng, 1900, South Africa

²Department of Industrial Engineering, Operation Management, and Mechanical Engineering, Vaal University of Technology, Andries Potgieter Blvd, Private Bag X021, Vanderbijlpark 1911, South Africa

Abstract

The viability of spray dry desulphurisation relative to wet flue gas desulphurisation (FGD) systems is determined by selecting a highly reactive scrubbing reagent. This research evaluated sodiumbased reagents from natural and waste by-product sources for treating sulphur dioxide (SO₂). Sodium carbonate (Na₂CO₃) and sodium bicarbonate (NaHCO₃) were obtained from mineral sources, whereas the black ash-BA (Na₂CO₃.NaHCO₃) was sourced from the pulp and paper industry. The sorbents introduced in slurry form were subject to SO₂ absorption conditions in a lab-scale spray dryer, including inlet gas phase temperature of 120 to 180 °C, flue gas flow rate of 21 to 34 m³/h, and sodium to sulphur stoichiometric ratio-SR (Na:S) of 0.5 to 2. The performance comparison was assessed based on %SO₂ removal efficiency (% η_{DeSO_r}) and revealed that NaHCO3 exhibited the highest overall effectiveness of 62% at saturation. BA was the second bestperforming reagent, achieving a removal efficiency of 56%, and Na₂CO₃ demonstrated the lowest efficiency of 53%. The maximum SO₂ reduction of NaHCO₃ at individual operating conditions was seen at an SR of 1.75 (69%), a reaction temperature of 120 °C (73%), and a gas inlet flow rate of 34 m³/h (80%). In summary, the sodium reagents produced notable SO₂ neutralisation of over 50% in their unprocessed state, which is within permissible bounds in small- to medium-sized coal-fired power plants considering retrofitting pollution mitigation systems.

Keywords: Black Ash, Desulphurisation, Emission control, Sodium Carbonate, Sodium Bicarbonate, Spray-dry.

*Corresponding author: Robert Makomere, Telephone: +27 (0) 16 950 6742, Email: 220178178@edu.vut.ac.za, ORCID: 0000-0002-0434-1633