

The 3rd International Electronic Conference on Processes 29-31 May 2024 | Online

Exploring the Dynamics of Natural Sodium Bicarbonate (Nahcolite), Sodium Carbonate (Soda Ash), and Black Ash Waste in Spray Dry SO₂ Capture.

Robert Makomere^{1, *}, Lawrence Koech¹, Hilary Rutto¹, Alfayo Alugongo².

¹Clean Technology and Applied Materials Research Group, Department of Chemical and Metallurgical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark, Gauteng, 1900, South Africa

²Department of Industrial Engineering, Operation Management, and Mechanical Engineering, Vaal University of Technology, Andries Potgieter Blvd, Private Bag X021, Vanderbijlpark 1911, South Africa

INTRODUCTION & AIM

Background: Spray drying devices are a subset of SO_2 mitigation methods proven to be as competitive as wet FGD units, surpassing 90% while producing dry by-products, eliminating the need for post-treatment procedures (Koech et al., 2021).

RESULTS & DISCUSSION

1. Effect of the stoichiometric ratio

Figure 1: Effect of stoichiometric molar ratios on SO_2 capture for

Hydrated lime $(Ca(OH)_2)$ is primarily employed in spray dry absorption operations, given its excellent performance, however limited by high prices and low reagent conversion rates.

Aim: This study evaluated and compared the performance attributes of sodium-based sorbents (nahcolite, soda ash, and black ash) obtained from various sources using a laboratory spray-dry setup

Figure 1: The spray dry laboratory experimental setup.

2. Effect of flue gas flow rate

sodium bicarbonate, sodium carbonate, and black ash sorbents (solid weight fraction, 10%; inlet SO₂ concentration, 1000ppm, sulphation temperature, 120 °C; flue gas flowrate, 27 m³/h; slurry flowrate
225 0.8 kg/h).

Figure 2: Effect of flue gas flowrate on SO₂ capture for sodium bicarbonate, sodium carbonate, and black ash sorbents (solid weight fraction, 10%; stoichiometric molar ratios, 1.5; inlet SO₂ concentration, 1000ppm, sulphation temperature, 120 °C; slurry flowrate 0.8 kg/h)

3. Effect of sulphation temperature.

Figure 3: Effect of sulphation temperature on SO_2 capture for sodium bicarbonate, sodium carbonate, and black ash sorbents (slurry weight fraction, 10%; stoichiometric molar ratios, 1.5; inlet SO_2 concentration, 1000ppm, flue

METHOD

Materials.

- Sulphur dioxide gas (99.9%) was supplied by Afrox, South Africa.
- Nahcolite (93 wt.% NaHCO₃) and trona (87.1 wt.% Na₂CO₃) were

obtained from Sua Pan mines, Botswana, while the black ash (62.9 wt.%:36.5 wt.% of Na_2CO_3 :NaHCO₃) was sourced from paper and pulp manufacturing.

Absorption experiments.

Table 1: Spray dry operating conditions.

Experimental variable	Range
Stoichiometric ratio	0.5-2
Flue gas flow rates (m ³ /h)	21-34
Sulphation temperature (°C)	120-180

Slurry flow rate of 0.8 kg/h, SO_2 concentration of 1000 ppm, fluid spray nozzle dimensions of tip diameter - 0.7 mm and a cap diameter - 1.4 mm.

CONCLUSION

- Elevated SR improve the neutralization reactions for all sorbents.
- Augmenting the flue gas flow rate results in greater material blending, which improves desulfurization for all sorbents, but the performance of soda ash declines above a flow rate of 31 m³/h due to diminished gas contact.
- Nahcolite showed higher performance across all experimental conditions, with removal efficiency of 73%, compared to 69% for black ash and 62% for soda ash.

FUTURE WORK / REFERENCES

Koech, L.; Rutto, H.; Lerotholi, L.; Everson, R.C.; Neomagus, H.; Branken, D.; Moganelwa, A. Spray Drying Absorption for Desulphurization: A Review of Recent Developments. Clean Technol. Environ. Policy 2021, 23, 1665–1686, doi:10.1007/s10098-021-02066-3

https://ecp2024.sciforum.net/