Application for Validation of Compound Identification in GC×GC Using Retention Index Based
Palathip Kakanopas¹, Isay Thaveangsaksulthai², Chadin Kulising²

¹Navaminda Kasatriyadhiraj Royal Thai Air Force Academy
²Department of Chemistry, Faculty of Science, Chulalongkorn University

INTRODUCTION & AIM

Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technique for separating, identifying, and quantifying volatile and semi-volatile compounds in complex samples. Typically, mass spectrometry (MS) is used for peak identification in GC×GC, but relying solely on MS library comparison can have limitations, especially for isomers with similar mass spectra. Additionally, optimizing the separation conditions for improved resolution in GC×GC can be challenging.

To enhance the peak identification, GC retention database such as that obtained from Gibbs energy additivity [4], linear solvation energy relationship (LSER) [2] and Kovats and van den Dool relationship [5] could be taken into account. A desirable goal is to establish approach for simulation of retention times in first and second dimensional separations (t₁o and t₂o) for a compound of interest in GC×GC result in order to confirm the peak identity obtained from the MS library match. t₁o and t₂o are related to properties of each compound leading to different interactions, e.g., dispersity-related, dipolarity-type, hydrogen bond and dispersion/cavity formation, with stationary phase. However, prediction of t₁o from the thermodynamic constants has not been widely applied due to the limited amount of database and the complexity in database construction (e.g., prediction of 10 compounds on 10 types of columns under a certain condition requiring up to 100 sets of the thermodynamic constants), LSER method is thus more suitable for bulk analysis systems. Apart from these, Kovats and van den Dool relationship were used for retention index calculation which has been the most widely used database for comparison of retention order within among different research groups and to support peak identification with MS library.

This research will illustrate the capability of computational program to predict peak positions (t₁o and t₂o) and peak intensity (I) and improve identification and experimental design of GC×GC with gradient temperature elution.

METHOD

Overall process for simulation of peak position (step 1-7), I (step 8-9) and peak intensity (step 10-11).

RESULTS & DISCUSSION

Applications for confirmation of compound identification for different samples reported from the literature were demonstrated via their fᵣᵣ correlation plots. Solver has been found to be a useful tool to vary pᵢ-pᵢ, minimizing the difference between tᵢo and tᵢo, leading to simulation of the results based on the assumption that the compound identities reported from the literature were mostly correct. Thus, the observation of some compounds being out of the correlation trendline (mismatching between tᵢo and tᵢo) suggests that there is an error for the compound identification.

CONCLUSION

Thus, the developed approach can provide more reliable compound identification results in diverse samples. However, this application requires the training from the specialist before use, or the established approach need to simplify especially for reducing complexity of the approach to be more user friendly in the future.

FUTURE WORK / REFERENCES

Reference

https://ecp2024.sciforum.net