

The 3rd International Electronic **Conference on Processes** 29-31 May 2024 | Online

Investigation of Scale-Up Strategies for an Aerated Bioreactor Comprised of a Coaxial Mixer with Yield-Pseudoplastic Fluid P. L. Barros, F. Ein-Mozaffari, A. Lohi

Toronto Metropolitan University, 350 Victoria Street, Toronto, Canada M5B 2K3

INTRODUCTION & AIM

Defining bioreactor scale-up strategies is a complex task aimed at establishing a framework for achieving equal mixing and mass transfer quality at large scales when compared to smaller scales. A primary concern in developing these strategies is ensuring the applicability of empirical correlations derived from small-scale equipment to the large-scale counterpart. The present study aims to propose and evaluate scale-up frameworks based on empirical estimations of volumetric mass transfer coefficients obtained from a small-scale vessel, as detailed in Figure 1.

METHOD

	-		
Gas flow number	0	0	Reynolds numbe

Figure 4. Estimated effect of gas flow number and Reynolds number on the dimensionless volumetric mass transfer coefficient.

eg		
vvm	1	1
v_{s}	1.5	1.5
$k_L a$	$(1.5)^{1.3}$	1.5

Table 3. Experimental data for validation of the scale-up strategy.

Mixing Scale	N _c (rpm)	N _a (rpm)	Q_g (L/min)	Estimated $k_L a$ (s^{-1})	Experimental $k_L a$ (s^{-1})	Relative Error (%)
Small-Scale	300	20	20	0.00083	0.00088	5.41
	350	20	20	0.00110	0.00130	15.70
	400	20	20	0.00139	0.00155	10.15
Large-Scale Equal N_c , N_a , and vvm	300	20	68	0.00139	0.00123	12.95
	350	20	68	0.00184	0.00173	6.41
	400	20	68	0.00234	0.00228	2.66
Large-Scale	280.4	18.7	68	0.00124	0.00074	67.73
Equal P_g/V , N_r , and	327.1	18.7	68	0.00164	0.00134	22.87
vvm	373.7	18.7	68	0.00209	0.00233	10.38

Figure 5. Variation in flow regime upon scale-up that originated the large error in the scale-up validation data ($N_c = 280.4 \text{ rpm}$; $N_a = 18.7 \text{ rpm}$, and $Q_g = 68 \text{ L/min}$).

CONCLUSION

Volumetric Mass Transfer Coefficient Analysis: A proposed dimensionless empirical correlation demonstrated a correlation coefficient of 0.904, accurately predicting 77% of the data within $\pm 15\%$ of the ideal prediction.

Scale-Up Framework: The most efficient strategy consisted in maintaining specific power consumption, speed ratio, and volumetric gas flow rate per volume of liquid constant.

Validity of Scale-Up Strategy: The proposed scale-up strategy remains valid as long as the gasliquid flow regime remains consistent across different scales.

CFD Modelling Approach: It allows for the prototyping of mixer designs at manufacturing scale.

REFERENCES

[1] P.L. Barros, F. Ein-Mozaffari, A. Lohi, Can. J. Chem. Eng. 1, 2023. [2] A. Rahimzadeh, F. Ein-Mozaffari, A. Lohi, Ind. Eng. Chem. Res. 2022, 61, 3713. [3] B. Liu, Y. Zheng, R. Cheng, Z. Xu, M. Wang, Z. Jin, Chin. J. Chem. Eng. 2018, 26, 1785.

https://ecp2024.sciforum.net/