

Cultivating Sustainability: Extracting Curcuminoids from *Curcuma Longa* using a Green Approach

Assya Bellaadem¹, Filipa A. Vicente¹, Blaž Likozar¹ ¹NIC - National Institute of Chemistry, Ljubljana, Slovenia * filipa.andre.vicente@ki.si

1. INTRODUCTION

Industries significantly impact the environment through their use of energy, water, and resources, as well as their resource exploitation methods. The current linear economic model, which follows a take-make-dispose approach, has led to a global waste crisis. Transitioning to a circular economy is essential to address this issue. Industries face major challenges in downstream processes, such as extraction and purification, which constitute up to 80% of operational costs. Conventional high-resolution methods, though common, are expensive, capacity-limited, and can compromise process precision due to diffusional spread. An alternative is the use of aqueous two-phase systems (ATPS), specifically aqueous micellar two-phase systems (AMTPS), for biomolecule separation. AMTPS require only a surfactant and water or an aqueous solution, with phase separation induced by temperature changes. There is also a growing demand for curcumin, known for its benefits as a natural colorant and its anti-inflammatory, antioxidant, analgesic, and anticancer properties. Turmeric, which contains curcumin, also includes demethoxycurcumin and bisdemethoxycurcumin.

2. EXPERIMENTAL SECTION

To develop the curcuminoids extraction and purification from *Curcuma longa* utilizing micellar solutions, this work was structured into two interconnected and sequential steps: solid-liquid extraction (SLE) followed by liquid-liquid extraction (LLE). This approach aims to minimize solvent consumption, namely in LLE, where purification is accomplished using micellar two-phase systems (AMTPS). The quantification of curcuminoids and the contaminants in the supernatant post-SLE, as well as in each phase post-LLE, is conducted through UV-VIS spectroscopy and HPLC.

3. RESULTS

3.2. CENTRIFUGATION TIME OPTIMIZATION

3.1. OPTIMIZATION OF SLR AT A FIXED EXTRACTION TIME

Fig.1: Curcuminoids' concentration in i) the supernatant obtained with SLE, ii) the surfactant-rich phase, iii) surfactant-poor phase, and iv) curcuminoid recoveries in both phases

3.3. EXTRACTION TIME OPTIMIZATION WITH THE MOST PROMISING SLR

Fig.3: Curcuminoids' concentration in i) the supernatant obtained with SLE, ii) the surfactant-rich phase, iii) surfactant-poor phase, and iv) curcuminoid recoveries in both phases

3.4. HPLC METHOD OPTIMIZATION

- → Quantification of individual curcuminoids
- → 6 different methods were tried out
- → Last method as presented in Fig.5 iv) results in three divided, sharp peaks

4. CONCLUSIONS

This study focused on optimizing the extraction and purification of curcuminoids from *Curcuma longa* using eco-friendly micellar solutions. The research employed SLE and AMTPS processes, emphasizing the individual optimization of each parameter.

Acknowledgments The authors acknowledge the financial support from the Slovenian Research Agency under the research core funding No. P2-0152.	References 1) https://www.theworldcounts.com/stories/depletion-of-natural-resources 2) https://www.weforum.org/agenda/2022/06/what-is-the-circular-economy 3) Walls, D. and Loughran, S.T. (2011). Protein Chromatography. Humana Press.	
--	--	--

4) Gille, S.T., Sheen, K.L., Swart, S., and Thompson, A.F. (2022). "Mixing in the Southern Ocean." In: Meredith, M., Naveira Garabato, A. (Eds.), Ocean Mixing. Elsevie