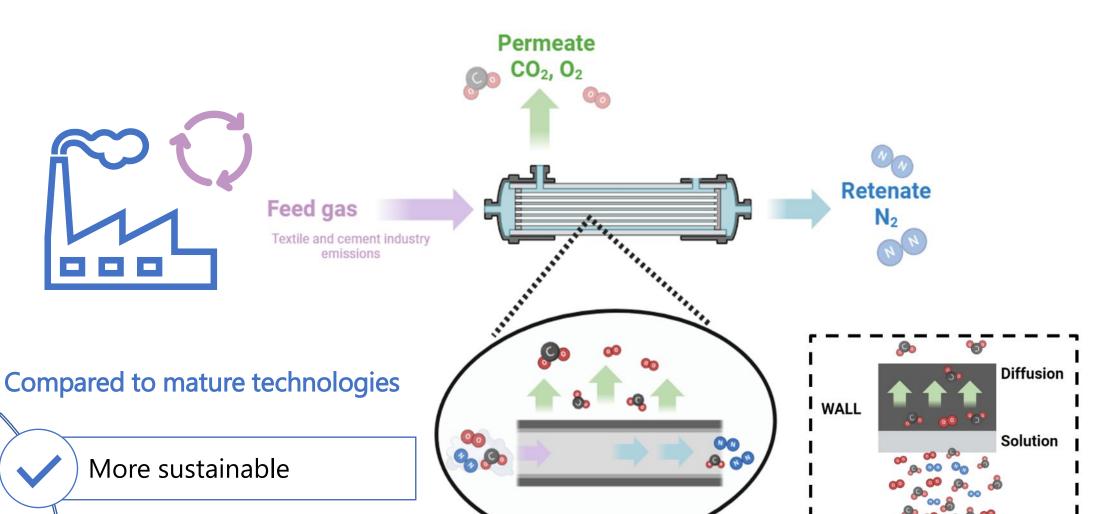


# **Development and evaluation of a CO<sub>2</sub> capture system using** hollow fiber membranes for industrial emissions applications




S. Arias-Lugo, L. Gómez-Coma, G. Díaz-Sainz, A. Irabien Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain. email: stephanie.arias@unican.es

0)

# Introduction

This study aims to assess a CO<sub>2</sub> capture system real gases from the textile and cement industry on an experimental scale through a polysulfone hollow fiber membrane contactor, with the goal of developing a pilot-scale system



#### Methodology **Membrane characteristics** Manufacturer: Airrane Material: Polysulfone Permeate Geometry: Hollow fiber Specific area (cm<sup>2</sup>): 1822 No. of fibers: 2000 Retenate Feed gas Figure 2. Diagram of system for gas separation with membrane Table 1. Characteristics of industrial gases

|              | Adaptable to existing |  |
|--------------|-----------------------|--|
|              | plants                |  |
| $\checkmark$ |                       |  |

Lower energy requirements

Figure 1. Separation mechanism of gases in a dense hollow fiber membrane [1,2]

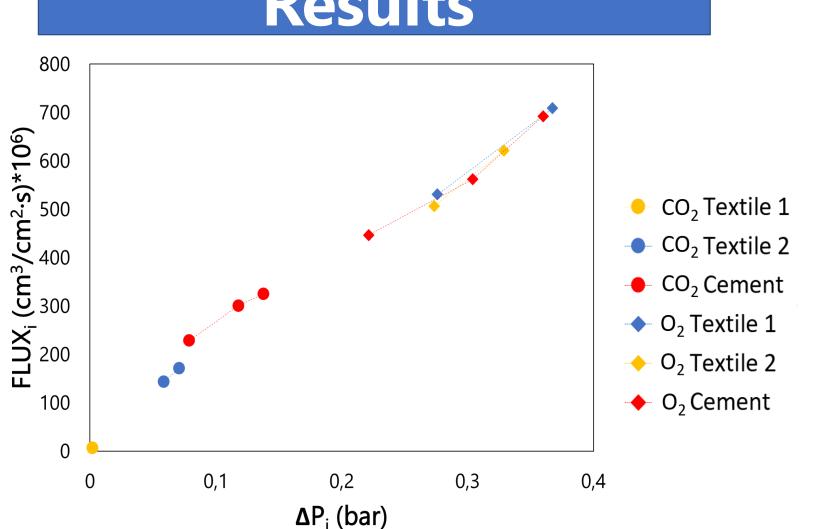



Figure 3. Permeate flow of  $CO_2$  and  $O_2$  from textile and cement industry samples as a function of  $\Delta p_i$ 

| Membrane                                          | CO <sub>2</sub> Permeance<br>(GPU) | CO <sub>2</sub> /N <sub>2</sub><br>Selectivity | CO <sub>2</sub> /O <sub>2</sub> Selectivity |
|---------------------------------------------------|------------------------------------|------------------------------------------------|---------------------------------------------|
| Binary mixture (CO <sub>2</sub> -N <sub>2</sub> ) | 50.09                              | 6.26                                           | _                                           |
| Textile 1                                         | 20.73                              | 3.35                                           | 0.86                                        |
| Textile 2                                         | 32.65                              | 6.27                                           | 1.32                                        |
| Cement                                            | 36.47                              | 6.95                                           | 1.38                                        |

| 5            | Origin               | Compound        | Composition | Company                 |
|--------------|----------------------|-----------------|-------------|-------------------------|
|              | Textile industry 1   | CO <sub>2</sub> | 0.5%        |                         |
|              |                      | O <sub>2</sub>  | 20.0%       | Textil                  |
| Textile ind  | Toutile inductor (2) | CO <sub>2</sub> | 3.6%        | Santanderina,<br>S.A.   |
|              | Textile moustry 2    | O <sub>2</sub>  | 13.4%       |                         |
| Cement indus |                      | CO <sub>2</sub> | 6.9%        | Cementos                |
|              | Cement industry      | O <sub>2</sub>  | 14.5%       | Portland<br>Valderrivas |

#### Table 2. Experimental conditions

| Variable                 | Value         |
|--------------------------|---------------|
| Feed pressure (bar)      | 4,5,6         |
| Permeate pressure (bar)  | 1             |
| Feed flowrate (mL/min)   | 650           |
| $CO_2$ concentration (%) | 0.5, 3.6, 6.9 |

\*In industrial gases it is assumed that the remainder is  $%N_2$ 

## Conclusion

- $CO_2$  permeate flux significantly depends on feed concentration, unlike  $O_2$ , • which is independent.
- For the lowest CO<sub>2</sub> concentration stream, permeation is negligible, but reaches up to 325 cm<sup>3</sup> cm<sup>-2</sup> s<sup>-1</sup>\*10<sup>6</sup> for cement gases.
- $O_2$  competes with  $CO_2$  for membrane transport sites, notably affecting textile gas 1.
- $CO_2/N_2$  selectivity remains similar for cement gases and textil gases 2 but decreases by nearly 50% for textile gases 1

## **Further work**

- Evaluate technically and economically the implementation of membranes with higher  $CO_2/O_2$  selectivity.

#### Results

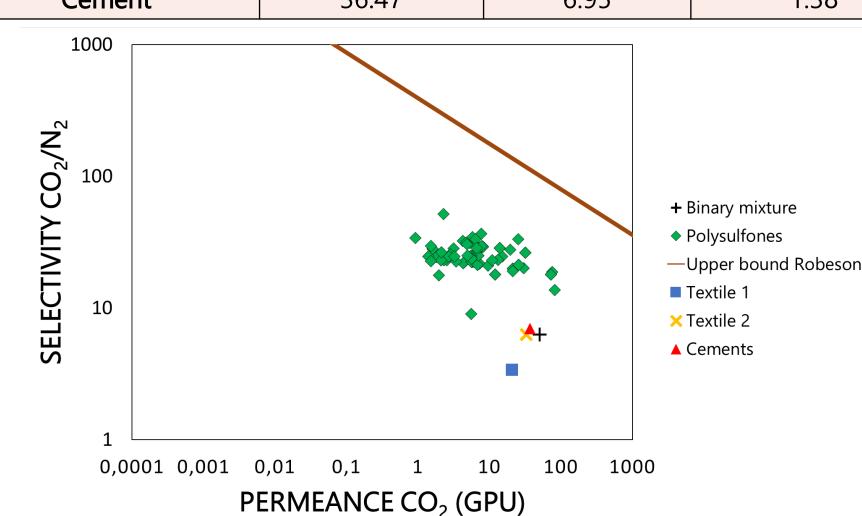



Figure 4. Comparison of CO<sub>2</sub> permeance and selectivity for various samples against Robeson's upper bound and other polysulfone membranes. Adapted from [3]

Design the system with additional stages employing more steps.

### Acknowledgments

The authors gratefully acknowledge financial support through project PLEC2022-(MCIN/AEI/10.13039/501100011033 and Unión Europea 009398 Next GenerationEU/PRTR). The present work is related to CAPTUS Project. This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101118265.



References

[1] Kamolov, A. et al. (2023). Membranes 13(2), 130. [2] Janusz-Cygan, A. et al., (2020). *Membranes* 10(11), 309. [3] A. W. Thornton. et al. (2012). Polymer Gas Separation Membrane Database.