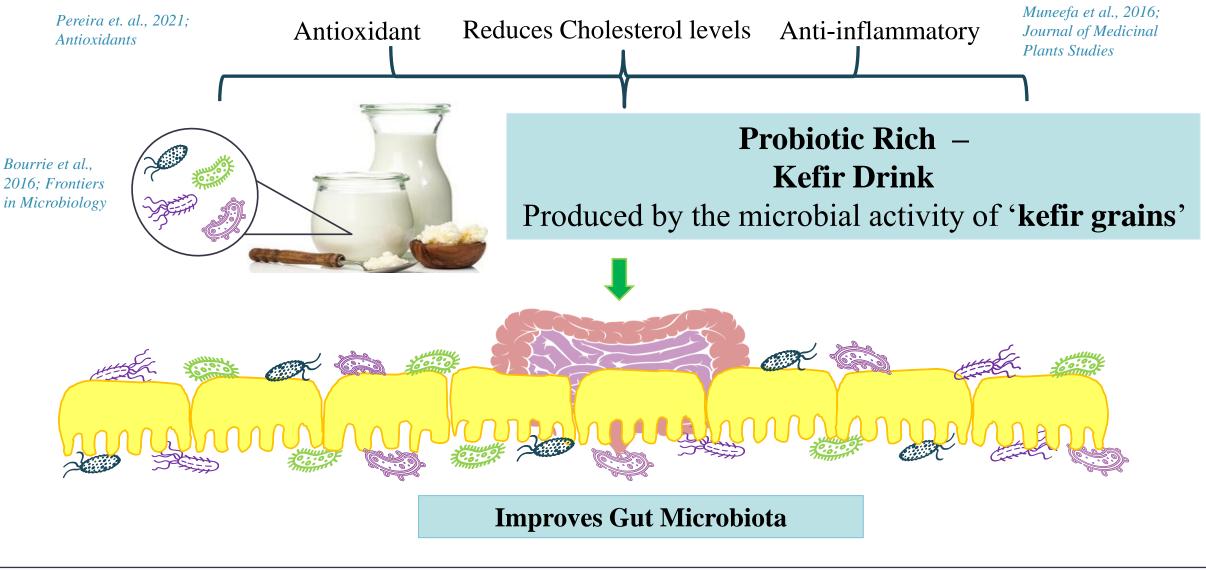
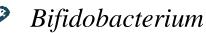


Comprehensive Chemical, Nutritional, and Antioxidant Profiling of

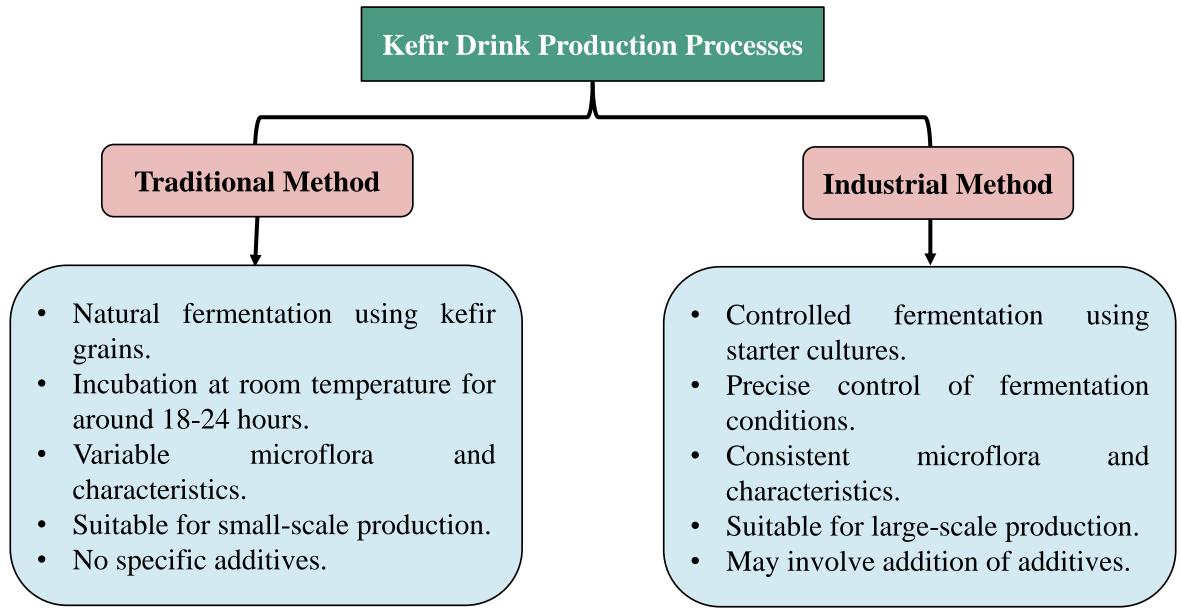

Homemade Milk Kefir Drink

Presented By:

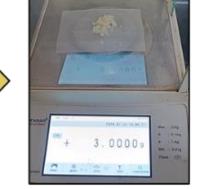
Muskan Chadha


PhD Scholar (Nutrition & Dietetics) Sharda School of Allied Health Sciences, Sharda University, Greater Noida, India

Introduction

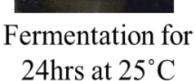


Objectives


I. To evaluate physiochemical and nutritional properties of homemade milk kefir drink.

II. To determine antioxidant activity, total phenolic compounds and volatile bioactive compounds of homemade milk kefir drink.

Methodology


Formulation of Homemade Cow milk kefir drink

Boiling milk

3% (w/v) Kefir grains inoculum

Sieving kefir grains for **REUSE**

Milk Kefir drink stored at 4°C.

Optimized using RSM:

Independent variable: kefir grains inoculum (2-4% w/v) Dependent variables: pH, CFU/ml, and overall acceptability

Guzel-Seydim et. al., 2021; Trends in Food Science & Technology

Drink Analysis

Physicochemical analysis

- Moisture Hot air oven
- Acidity Titration

Analysis

(AOAC 2000)

- pH Digital pH meter
- Viscosity Digital viscometer

DPPH radical-scavenging activity: UV spectrophotometric method

Total Phenolic compounds: Folin-Ciocalteau method

(Ozcan et al. 2019) Bioactive Compound Identification: GC-MS

(Al-Mohammadi et al. 2021)

Sensory analysis: 9-point hedonic rating scale (Mishra et al. 2015)

Nutritional analysis

Protein – Kjeldahl method	(AOAC 2000)			
Carbohydrate – Summation method				
Calories Summation method	(Kumari et al. 2018)			
Fat – Rose-Gottlieb Method	(FSSAI 01.123:2022)			
Ash – Muffle furnace				
Calcium	(IS-14792:1961)			
Zinc				
Iron				
Magnesium AAS				
Chloride AAS	(<i>IEC-62321-5-2013</i>)			
Iodine				
Manganese				
Phosphorous	(<i>IEC-14792:1961</i>)			
Potassium – Elemente de la company	(10,10760.2012)			
Sodium Flame photome	etry (IS-12760:2012)			

Results

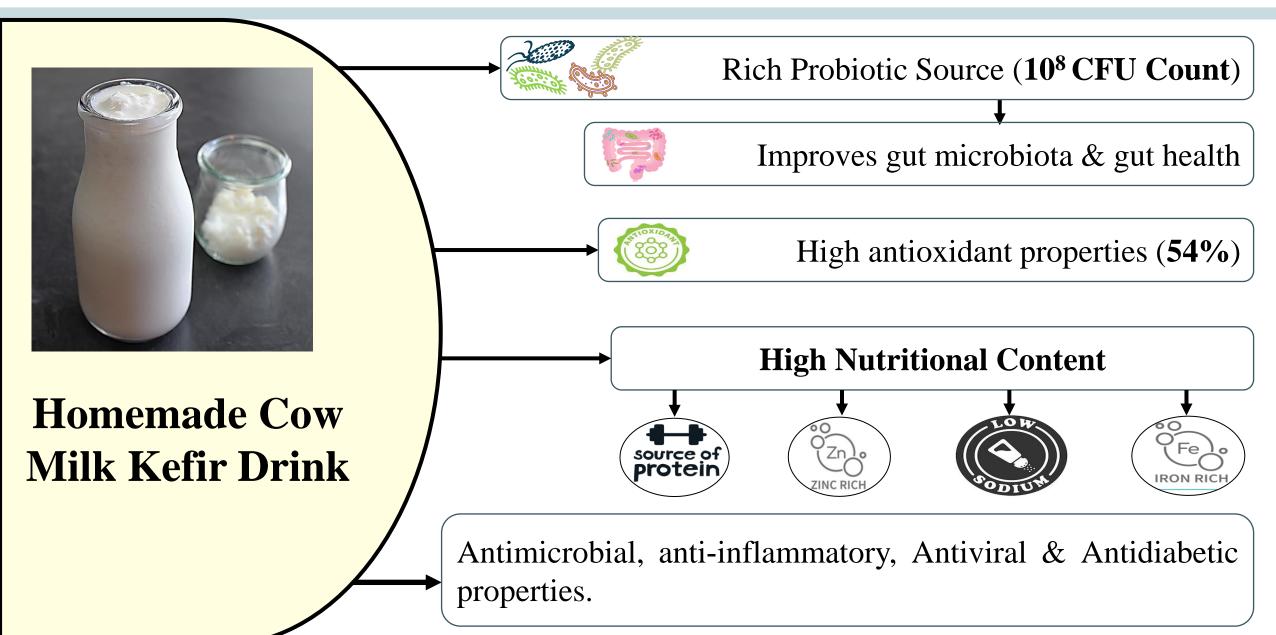
Optimized Homemade Cow Milk Kefir Drink

 $CFU/ml = 2.06 \times 10^8$

Overall acceptability = 6.1

pH = 4.22

Drink Analysis


Parameters	Homemade Milk Kefir Drink	Market Probiotic Products	Nutrient Content Claim (FSSAI/SP/2021)
Colony Forming Unit (CFU/ml)	1.06×10^{8}	107 - 108	Probiotic-Rich source ($\geq 10^8$)
pН	4.2	-	
Overall Acceptability	6.1	-	_
Protein (g/100ml)	3.6	1-3	Protein Source ($\geq 2.7g/100ml$ i.e. 5% RDA/100ml)
Fat (g/100ml)	3.4	0 - 5	_
Sodium (mg/100ml)	59.4	16 – 74	Low Sodium (≤120mg/100ml)
Calcium (mg/100ml)	29.3		Calcium Source (30% RDA/100ml)
Iron (mg/100ml)	2.9	-	High Iron (≥2.85g/100ml i.e. 15% RDA/100ml)
Zinc (mg/100ml)	3.9		High Zinc (≥2.55g/100ml i.e. 15% <u>RDA/100ml</u>)
Magnesium (mg/100ml)	44.1		
DPPH Antioxidant potential (%)	54	_	-
Phenolic Compound (mgGAE/100ml)	18	_	_

GC-MS Analysis

Total Number of bioactive compounds were 32 out of which 13 selected bioactive compounds which shows potential properties

Compound Name	Nature of the compound	Potential Bioactive Properties
2-Furanmethol	Furan	Antiviral
		Anti-convulsant activity, anti-microbial,
6-Oxa-bicyclo[3.1.0]hexan-3-one	Bicyclic lactone	antidiabetic & antiobesity
4H-Pyran-4one, 2-3-dihydro-3,5-dihydroxy-6-		
methyl	Pyranone	Antioxidant & Anti-inflammatory
Butanoic acid, 2-ethyl-2-methyl	Free Fatty Acid	Antimicrobial & Anti-inflammatory
2,4:3,5-Dimethylene-I-iditol	Polyol	Antimicrobial, Mutagenic & Cytotoxic
D-Fructose, 1,3,6-trideoxy-3,6-epithio	Fructose	Carbohydrate
1-Butene,4-isothiocyanato-1-(methylthio)	Isothiocyanate	Antioxidant
		Anti-inflammatory, Antioxidant &
Ethanol, 2-(2-butoxyethoxy)-acetate	Ester	Antiproliferative
sec-Butyl nitrite	Nitrite	Antibacterial
β-D-Glucopyranose, 4-O-β-D-galactopyranosyl	Glucose-galactose disaccharide	Aniviral & Antioxidant
Methyl 2,3-di-O-acetyl-4-O-methyl-α-D-		
xylopyranoside	Xylose derivative	Antimicriobial
		α-glucosidase inhibitory, Antioxidant,
2-Acetylamino-3-hydroxy-propionic acid	Amino acid derivative	Antimicrobial & Antidiabetic

Conclusions

Future Scope

- Developments of different variants from homemade milk kefir drink such as synbiotic drinks, spread, gummies or candies.
- Researches are required to explore the relationship between the homemade milk kefir drink with various gastrointestinal diseases and neurodegenerative diseases.

References

- Bourrie, B.C., Willing, B.P. and Cotter, P.D., 2016. The microbiota and health promoting characteristics of the fermented beverage kefir. Frontiers in microbiology, p.647.
- Pereira, T.M., Côco, L.Z., Ton, A.M., Meyrelles, S.S., Campos-Toimil, M., Campagnaro, B.P. and Vasquez, E.C., 2021. The Emerging Scenario of the Gut–Brain Axis: The Therapeutic Actions of the New Actor Kefir against Neurodegenerative Diseases. Antioxidants, 10(11), p.1845.
- Najafpour, A., Khorrami, A.R., Azar, P.A. and Tehrani, M.S., 2020. Study of heavy metals biosorption by tea fungus in Kombucha drink using Central Composite Design. Journal of Food Composition and Analysis, 86, p.103359.
- Guzel-Seydim, Z.B., Gökırmaklı, Ç. and Greene, A.K., 2021. A comparison of milk kefir and water kefir: Physical, chemical, microbiological and functional properties. Trends in Food Science & Technology, 113, pp.42-53.
- Ozcan T, Sahin S, Akpinar-Bayizit A, Yilmaz-Ersan L (2019) Assessment of antioxidant capacity by method comparison and amino acid characterisation in buffalo milk kefir. International Journal of Dairy Technology 72:65–73.
- Al-Mohammadi A-R, Ibrahim RA, Moustafa AH, et al (2021) Chemical Constitution and Antimicrobial Activity of Kefir Fermented Beverage. Molecules 26:2635.

THANK YOU

Muskan Chadha <u>muskanchadha3008@gmail.com</u>