The 2nd International Electronic Conference

Parameter Identification of Flexible Link Manipulaors Using Evolutionary Algorithms

Fabian Andres Lara-Molina
Department of Mechanical Engineering, Federal University of Triângulo Mineiro, Uberaba 38064-200, MG, Brazil

INTRODUCTION \& AIM

This paper addresses the parameter identification of a one-link flexible manipulator based on the experimental measurement of the inputs/outputs, the finite element model, and the application of evolutionary algorithms:

- The dynamic model is initially obtained using the finite element method and the Lagrange principle.
- A prototype of a single one-link flexible manipulator is used in the experimental application.
- An optimization problem minimizes the difference between numerical and experimental outputs to determine the set of parameters using evolutionary algorithms.
- A comparative analysis to obtain the identified parameters is established using genetic algorithms, particle swarm ontimization and differential evolution

> METHOD

$J(\hat{\mathbf{p}})=\frac{\left\|F R F_{e}-F R F_{n}(\hat{\mathbf{p}})\right\|}{\left\|F R F_{e}\right\|}+\frac{\left\|\phi_{e}-\phi_{n}(\hat{\mathbf{p}})\right\|}{\left\|\phi_{e}\right\|}$

$\mathbf{M}_{1}\left(\mathbf{q}_{1}\right) \ddot{\mathbf{q}}_{1}+\mathbf{h}_{1}\left(\mathbf{q}_{1}, \dot{\mathbf{q}}_{1}\right)+\mathbf{C}_{1} \dot{\mathbf{q}}_{1}+\mathbf{K}_{1} \mathbf{q}_{1}+\mathbf{f}_{b}=\mathbf{f}_{1}$

The proposed methodology permitted to estimate the joint friction, stiffness and damping coefficients of the flexible-link that can not be determined by experimental measurements. Additionally, The the numerical model with the identified parameters simulates adequately the dynamics regarding the joint response and the vibrational flexible-link dynamics of the manipulator as demonstrated in the model validation approach.

FUTURE WORK / REFERENCES

Further research work will aims at the development of control schemes of flexible-link manipulators based on the identified model.

