#### IECMA 2024 Conference

#### The 2nd International Electronic Conference on Machines and Applications 18-20 June 2024 | Online

Development of an orthogonal transfer system for the automated warehouse industry

Rafael S. Fonseca, Raul D.S.G. Campilho









### **PRESENTATION LAYOUT**

- Context;
- Objectives;
- Presentation of the host company;
- Process description;
- 24V orthogonal transfer;
- Operating principle;
- Mechanical project;
- Conclusions and future work.



### CONTEXT

• Automated warehouses

- Combination of control equipment that storage and return materials or objects with a great degree of automation;
- E-commerce;
- Higher consumer demands;
- Search for innovative solutions.



# **OBJECTIVES**

- Development of an ortogonal transfer;
- Standardization of the equipment;
- High flexibility;
- Ease of assembly and maintenance;
- Guaranteed operational safety;
- High construction quality;
- Compliance with all applicable regulations;
- Throughput ≈ 1500 units/h;
- Max load: 50 kg.



### **PRESENTATION OF THE HOST COMPANY**



- Founded in 2002;
- Specialized in intralogistics equipment.

| Roller conveyor | Chain conveyor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Turntable | Orthogonal<br>pallet transfer | RGV                                   |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------|---------------------------------------|
|                 | Contraction of the second seco |           |                               | A A A A A A A A A A A A A A A A A A A |



## **PROCESS DESCRIPTION**



- 1. The box travels in a roller conveyor;
- 2. The box is detected by a photovoltaic sensor, ordering the roller conveyor to stop, immobilizing the box in the transfer area;
- 3. The transfer belts elevate the box;
- 4. The belts move the box to an adjacent conveyor;
- 5. The belts return to their original position;
- 6. The box travels in another conveyor.





### **24V ORTOGONAL TRANSFER**





# **SUB ASSEMBLIES**



- Belt meets the load and transfers it to another conveyor
- Mechanism guarantees stability during elevation
- 2 Roller drivers, one responsable for the elevation and the other for the activation of the belts
- Base structure that fixes the equipment to a roller conveyor



# **OPERATING PRINCIPLE**

- Detection of the box in the transfer position which stops the roller conveyor;
- Both roller drivers are activated. Belts start moving and the superior structure is elevated;
- The belts transport the box to an adjacent conveyor.

• The belts rollerdriver is desactivated while the other spins in the opposite direction, lowering the superior structure to the original position.









# **PRE DESIGN**

#### **GENERAL CONCEPT**

#### Complete module





#### **DRIVE MODULE**

| Gearmotor | Motorized<br>roller | Air spring | Pneumatic<br>cylinder | Electric<br>cylinder |
|-----------|---------------------|------------|-----------------------|----------------------|
|           | 0                   |            |                       | AL CONTRACT          |



### **PRE DESIGN – ELEVATION MODULE**





Eccentric cam



Cad version of the test module



 $\bigcirc$ 

Snail cam

Real version of the test module

- Design of a system to fix the cam to the roller driver;
- Development of a test model.



Test results



## **PRE DESIGN - TENSIONING MODULE**





#### Simple module

Complex module



## **DESIGN - STRUCTURE**



- Composed by 3 parts bolted together;
- Bent sheet metal;
- Windows to facilitate access during maintenence.

#### Anchor points

Same pitch between holes as the stadard conveyor for high placement flexibility







## **DESIGN – ELEVATION MODULE**



Longitudinal synchronism (detail)



Elevation arm and superior structure link



Transversal synchronism
(detail)



Contact point between the snail cam and a bearing



Stopper (double redundancy)



## **DESIGN – BELT MODULE**



- Two bent sheet metal parts for structure;
- 10 rollers;
- Tensioner module;
- 3 steel shafts to increase stiffness;
- Horizontal tuning option.



Belt tensioner module





# **DESIGN – BELT PATH**





## **DESIGN - CONTROL SYSTEM**



Sensor positioning with tuning Sensor and target bolt with tuning



# **DESIGN - FEM**



#### Critical case

#### Belt module



| Maximum von Mises<br>stress [MPa] | ≈ 20  |
|-----------------------------------|-------|
| Resultant<br>displacement [mm]    | 0,12  |
| Safety coefficient                | 11,75 |

#### Superior structure



| Maximum von Mises<br>stress [MPa] | 55,7  |
|-----------------------------------|-------|
| Resultant<br>displacement [mm]    | 1,338 |
| Safety coeficiente                | 4,2   |



## **DESIGN - SHIELDING**



24 V transfer with shields





POLITÉCNICO

DO PORTO



### **ASSEMBLY AND TESTING**





• Bearing support change



• New slot in the base structure to allow easier mounting of the Roller driver



New belt module



## TESTING



• No-load test



• 50 kg test – continuous cycles

| Box weight<br>[kg] | Cycle time [s] | Throughput [units/hour] |
|--------------------|----------------|-------------------------|
| 10                 | ≈ 1,6          | 2250                    |
| 30                 | ≈ 1,8          | 2000                    |
| 50                 | ≈ 2,0          | 1800                    |

• Test results for multiple box weights

POLITÉCNICO 22 DO PORTO



# **CONCLUSIONS AND FUTURE WORK**

#### Conclusions

- 50 kg box elevation was achieved;
- Throughput of 1500 units/h was surpassed;
- During testing was possible to verify that the equipment is capable of handling the previous conditions with high reliability.

Future work

- Further FEM optimization
- Using the elevation mechanism to develop diferent types of transfers (timing belt / 45° diverter)

