The 1st International Online Conference on Functional Biomaterials

NANOSCALE CYCLODEXTRIN SYSTEMS FOR DELIVERY OF TETRAPYRROLE PHOTOSENSITIZERS

Kablov I.V.¹, Kaskex V.^{1,2}, Kravchenko I.E.¹, Zorina T.E.¹, Zorin V.P.^{1,2}

¹ Department of Biophysics, Belarussian State University, Minsk, Belarus

² Department of General and Medical Physics, International Sakharov Environmental Institute, Minsk, Belarus.

INTRODUCTION & AIM

Cyclodextrins (CDs) are widely applied in medicine and pharmaceutical industry for the development of new pharmacological forms of drugs because of their ability to non-covalently bind in a host-guest manner and increase the bioavailability of drugs. The formation of CDs complexes with drug compounds provides a reduction in the compounds toxicity, increasing their stability in the body, as well as improving pharmacokinetic and pharmacodynamic properties. One of the promising directions for the development of drug delivery systems using CDs is the use of polymer systems based on them.

The aim of this work was a comparative study of the peculiarities of the formation of inclusion complexes of monomeric and polymeric derivatives of β-cyclodextrin (β-CD) with the known photosensitizer (PS) meta-tetra(hydroxyphenyl)chlorine, used in photodynamic therapy, and evaluation of the accumulation and localization of such complexes in cellular systems.

OBJECTS OF STUDY & METHODS

// LeicaTCSSPE fluorescence microscope, Germany.

RESULTS & DISCUSSION

Stability of mTHPC/β-CD derivatives inclusion complexes

The mTHPC dissociation rates from nanocarriers were compared by analyzing the redistribution of PS molecules from rates inclusion complexes onto DPPC liposomes (Bengem's method).

> mTHPC (1·10⁻⁷ M) M-β-CD (1·10⁻⁵ M) CM-β-CDPS (1·10⁻⁷ M) β-CDPS (1·10⁻⁷ M) DPPC (2·10⁻⁴ M)

The incubation temperature is 45 °C.

The rate of mTHPC dissociation from inclusion complexes with polymeric derivatives of β -CD is significantly lower compared to monomeric M- β -CD. It should be noted that there is no correlation between the PS release rates and its

3500

usity 3000

K562 (1x10⁶ cells/ml) M-β-CD (2,5·10⁻⁵ M) β-CDPS (2,5·10⁻⁷ M) CM-β-CDPS (2,5·10⁻⁷ M)

mTHPC (5·10⁻⁷ M)

serum proteins (2%)

When a photosensitizer is introduced as a part of complexes with various cyclodextrins, the rates of its accumulation in K562 cells differ significantly. The highest level of accumulation in cells was observed for mTHPC introduced with CM-β-CDPS. It is assumed that the main factor controlling the rate of intracellular accumulation is the rate of PS release from the complexes with CD.

mTHPC	0,915±0,081	0,931±0,084	0,111±0,051
mTHPC-	0,761±0,058	0,950±0,069	0,450±0,072
mTHPC-	0 871+0 070	0 083+0 07/	0 650+0 061
CM-β-CDPS	0,07110,079	0,903±0,074	0,030±0,001
mTHPC-	0.007.0.070	0.070.0.074	
β-CDPS	0,867±0,079	0,972±0,071	0,510±0,076

PCC from 1.00 to 0.70 — relatively strong correlation,

from 0.69 to 0.36 — moderate correlation, less than 0.20 — non-correlation.

According to the data obtained, the introduction of mTHPC in complexes with CD leads to changes in the characteristics of accumulation and localization of PS in cells and, as a consequence, the vectorization of photodynamic action of PS.

CONCLUSIONS:

PS effectively binds to monomeric and polymeric cyclodextrins. The use of cyclodextrins ensures the introduction of mTHPC in monomeric form. Differences in the rates of mTHPC release from complexes with monomeric and polymeric cyclodextrins suggest their different influence on the processes of PS biodistribution in the organism.