IOCFB 2024 Conference

The 1st International Online Conference on Functional Biomaterials 10–12 July 2024 | Online

Impact strength of composite materials on different thicknesses Cruz BS^{*1}, Dal Piva AMO², Lena IM³, Tribst JPM², Kleverlaan CJ²

1- Sao Paulo State University – UNESP (Brazil), 2- Academic Centre for Dentistry Amsterdam – ACTA (Netherlands),

3- Federal University of Santa Maria - UFSM (Brazil)

INTRODUCTION & AIM

- Composite materials are among the most widely applied in the clinical • practice of restorative dentistry
- Knowledge of the resistance of these materials in their different • consistencies is crucial for decision-making in the restorative process
- Knowledge of the resistance of these materials under more abrupt • forces, in an impact situation, is not widely explored in the literature

AIM: To investigate the effect of different consistencies of resin composite materials (conventional and flowable) commonly used for dental restorations on their impact strength

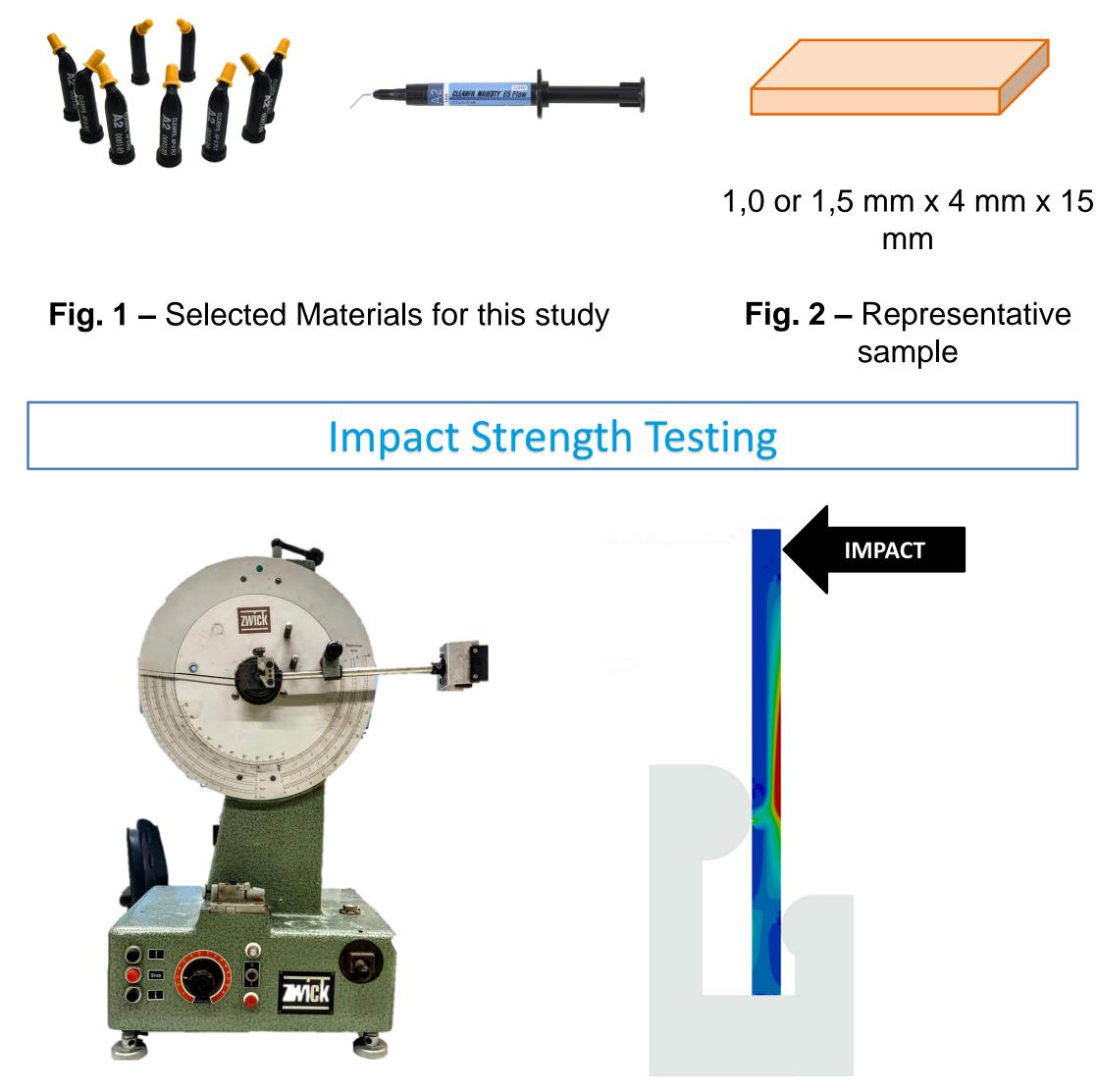
RESULTS & DISCUSSION

Results

Table 1 – Impact Strength test results according the study design (n=15) $(Mean \pm SD)$

Impact Strength (kJ/m ²)	
1.0 mm	1.5 mm
11.61 ± 2.66^{A}	6.53 ± 1.04^{A}
	1.0 mm

MATERIALS & METHODS


Study Design (N=60)

MATERIALS:

- Clearfil Majesty ES Flow (Kuraray Noritake)
- Clearfil AP-X PLT (Kuraray Noritake)

THICKNESSES:

• 1,0 mm and 1,5 mm

Conventional

 5.06 ± 0.98 ^B

 $6.75 \pm 1.01^{\text{A}}$

One-way ANOVA was used to evaluate the differences between the materials for the different thicknesses (p<0,05, CI 95%). Different letters indicate significant statistical differences in each column.

- Flowable composites tends to behave similar to conventional composites on thicker pieces
- Conventional composites tends to have lowest impact strength than the flowable ones on thinner pieces
- Considering thicknesses in the same materials, higher impact strength values were found for the Flow composite with 1.0 mm thickness

Discussion

- Thicker pieces can have more intrinsic deffects, which can lead to lowest impact strength results
- de Jager et al., 2021 Values for $APX = 2.54 \pm 1.04$, with a 2mm thickness, can corroborate with our findings, that thicker pieces has lowest impact strength
- Flowable composites can have lower defect population due to its application method
- Shrinkage stresses can play a role on the strength of larger pieces

CONCLUSION

Fig. 3 – Dynstat Aparatus

Fig. 4 – Central cross-section of the maximum tensile stress in the test set-up

Given the results, it can be concluded that the evaluated flowable resin composite behaved similarly to a regular composite in thicker constructions and that inner defects and residual polymerization shrinkage stresses can make larger pieces more fragile.

REFERENCES

1 – de Jager N, Münker TJAG, Guilardi LF, Jansen VJ, Sportel YGE, Kleverlaan CJ. The relation between impact strength and flexural strength of dental materials. J Mech Behav Biomed Mater. 2021 Oct;122:104658.

2 – Anusavice K (2003) Phillips' science of dental materials, 11th ed. Elsevier, St Louis 3 – Guilardi LF, Werner A, de Jager N, et al (2021) The influence of roughness on the resistance to impact of different CAD/CAM dental ceramics. Braz Dent J 32:54-65. https://doi.org/10.1590/0103-6440202103951