

Research Centre Inorganic Nanomaterials

<section-header>

New composite materials based on chitosan, carboxymethylcellulose, hydroxyapatite and wollastonite for bone regeneration

E.S. Chikanova¹, A.V. Korotkova¹, D.V. Shtansky¹ and A.P. Solonenko²

¹National University of Science and Technology "MISIS", Moscow 119049, Russia ²Omsk State Medical University, Lenina str., 12, Omsk 644099, Russia

Chikanova.es@misis.ru

INTRODUCTION

Composite materials are used in medicine for a wide range of practical tasks to improve human health. In traumatology and orthopedics, materials are used that combine biodegradable polymers with inorganic salts, most often calcium phosphates. Currently, the selection of multicomponent compositions of inorganic fillers that perform different functions and improve the characteristics of transplants is considered promising. In particular, the combination of phosphates and calcium silicates is of interest.

RESULTS & DISCUSSION 2. Chemical characterization

Table 1. Granule manufacturing materials

Name	HAp/WS, mas. %	D _{median,} µm	Paste concentration (g powder/ml hydrogel CS/CMC)
S1	0 / 100	133.3	0.6
S2	20 / 80	133.8	1.5
S3	40 / 60	110.7	0.5
S 4	60 / 40	99.0	0.65
S5	80 / 20	87.7	0.5
S 6	100 / 0	94.3	1.5

Figure 2. XRD Initial powders

Figure 3. The shape of the granules: a – spheres, b – cylinders, c - hemispheres

RESULTS & DISCUSSION

1. Morphology and physical properties

Figure 7. XRD (a), FTIR spectra (b, c) of composite granules

Table 2. Characteristic peaks by the XPS analysis of Hip/WS/CS/CMC granules and the atomic composition of the surface

The peak of	Binding energy	Chemical bonds	Atomic composition , ат.%		
the element	(эВ)		S 3	S 4	S 5
0 1s	530.1	O–P			
	530.9-531.1	O=P	42.83	41.89	43.92
	532.4-532.6	C–O, Si–O			
Ca 2p	346.5	Ca 2p3/2	8 23	10.21	10.60
	350	Ca 2p1/2	0.23	10.21	10.09
Р 2р	132.8	P–O	2.33	5.13	6.96
Si 2p	101.7-101.8	Si–O–C	11 55	5 17	3 0/
	103	Si–O–Si	11.00	5.47	5.04
C 1s	284.6	С–Н, С–С			
	286.2	COC	34.67	37.30	33.45
	287.6-288	O=C-O			
N 1s	399.1	C–N	0.38		1 02
	400.7-402	C–NH	0.00		1.30

3. In vitro degradation. MTT-test and antibacterial properties

Figure 4. SEM images of the surface of granules S1-S6

Figure 5. Physico-chemical properties of granules: a – density, b – porosity, c – microhardness, d – contact angle Figure 8. Degradation of granules in tris-buffer and 0.9% NaCI solution

Figure 9. MTT-Test (MC3T3) and antibacterial activity against Staphylococcus aureus (MW2) **CONCLUSIONS:** Based on the results obtained, the new materials obtained are suitable for bone regeneration and can be studied in vivo/.