IOCC 2024 Conference

The 4th International Online Conference on Crystals

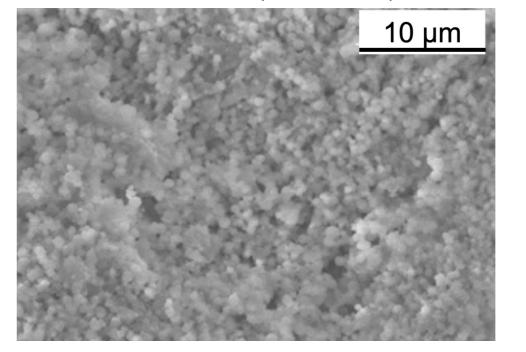
18-20 September 2024 | Online

New antimicrobial systems based on zeolites with RE = La, Gd functional ions

E. Domoroshchina¹, D. Tarkhanova¹, G. Kuz'micheva¹, R. Terekhova² ¹ MIREA – Russian Technological University, Moscow, Russia

² National Medical Research Center of Surgery named after A. Vishnevsky, Moscow, Russia

INTRODUCTION & AIM

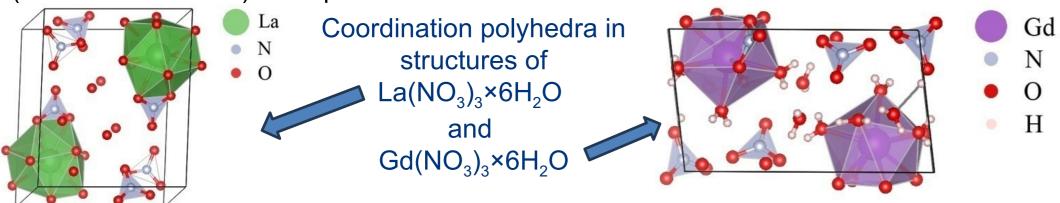

The antibiotic resistance necessitates the transition to fundamentally new drugs, in particular, $RE(NO_3)_3 \times xH_2O$ which have good antimicrobial properties [*Kuz'micheva G.M. et all. Crystallography Reports. 2020. V. 65. P. 922-932*]. To reduce the content of the active substance (*RE* ions) in the preparation while maintaining its functional effect, auxiliary components are added, which additionally introduce aesthetic and/or new functions. These components include zeolites: white powdery substances, biocompatible, inexpensive, with a large specific surface area.

THE PURPOSE OF THIS WORK is to create new composites based on two types of zeolites (MFI and BEA) with different silicate modules and functional particles $RE(NO_3)_3 \times 6H_2O$ (*RE*=La,Gd).

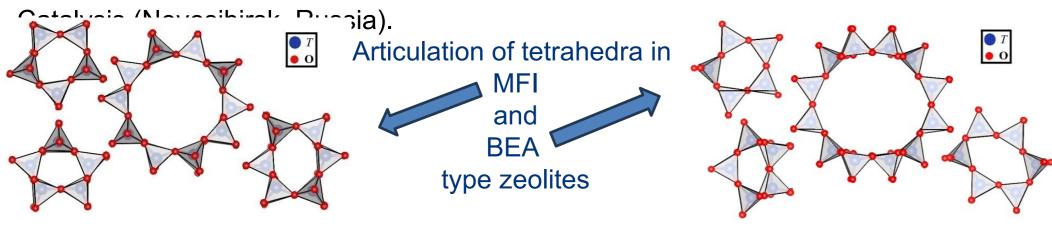
MATERIALS & METHODS

Characteristic SEM images: BEA-La (Si/Al = 150) MI

 $\mathbf{MFI}-\mathbf{La}\ (\mathbf{Si}/\mathbf{Fe}=\mathbf{68})$



<u>10 μm</u>

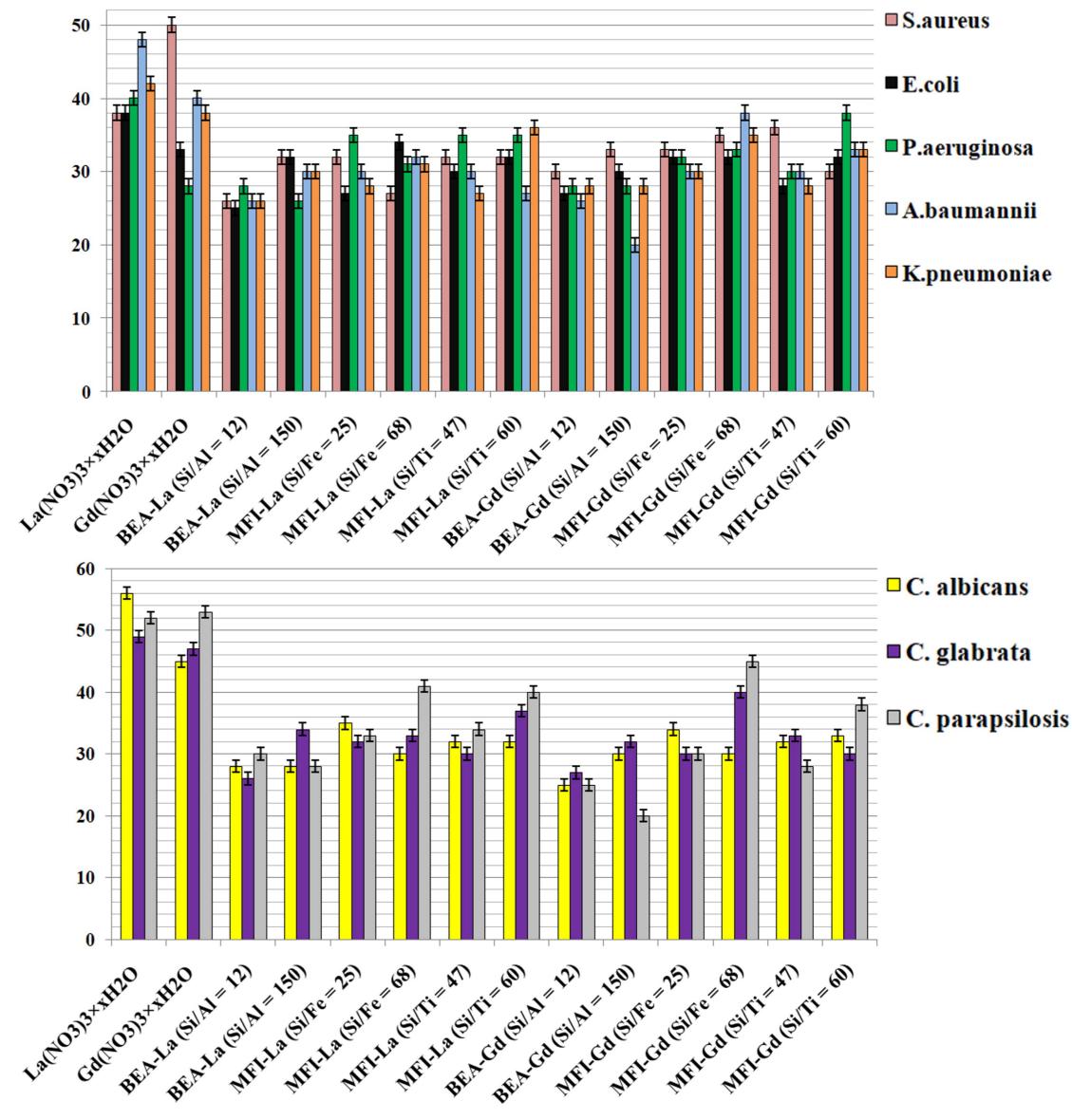

The composites in the system "MFI zeolites– $RE(NO_3)_3 \times 6H_2O$ (RE = La, Gd) salts" have larger particle sizes (N=12.5-35 µm) than composites "BEA zeolites– $RE(NO_3)_3 \times xH_2O$ (RE = La, Gd) salts" (N=7.5-8 µm) except for samples with MFI (Si/Ti=60) the particle sizes of which are comparable with BEA-based ones. ANTIMICROBIAL PROPERTIES

□ <u>MATERIALS</u>:

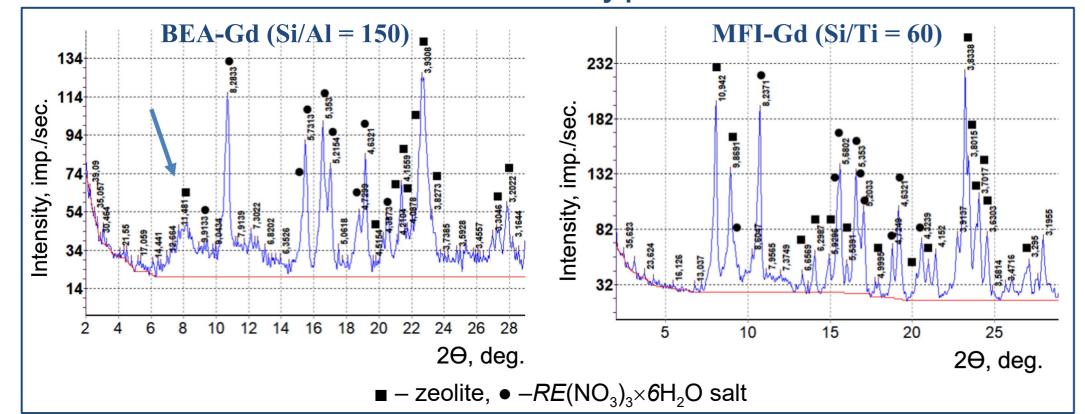
 $RE(NO_3)_3 \times xH_2O$ (*RE* = La, Gd) salts with 99.9% La (x=6) (CAS # 10277-43-7), Gd (CAS # 94219-55-3) were purchased from LANHIT Ltd (Russia) and used as received.

MFI type zeolites of compositions $(H_x)[(Fe^{3+}Si^{4+}_{12-x})O_{24}] \times wA$ (Si/Fe = 25, 68) and $[(Ti^{4+}Si^{4+}_{12-x})O_{24}] \times wA$ (Si/Ti = 47, 60) **and BEA type zeolites** of composition (H_x) $[(Al^{3+}Si^{4+}_{12-x})O_{24}] \times wA$ (Si/Al = 12, 150) were synthesized at Boreskov Institute of

□ <u>SINTHESIS:</u>


Composites in the system "zeolite (MFI type with Si/Fe = 25, 68 and with Si/Ti = 30, 47) or BEA type (Si/AI = 12, 150))- $RE(NO_3)_3 \times 6H_2O$ (RE = La, Gd)" were synthesized using the **cold impregnation method**: solid-phase mixing of the components (1:1.2), grinding (~4 min), annealing (250°C, 1 hour).

□ <u>METHODS</u>:


X-Ray Powder Diffraction: HZG- diffractometer, CuK α_1 , $\lambda = 1.54051$ Å, graphite flat monochromator, sample rotation, continuous shooting: pulse acquisition time 5 seconds, step 0.05°, angle range $2\theta = 2^{\circ}-50^{\circ}$.

Scanning Electron Microscopy: scanning electron microscope MINISEM A5100.

Disk diffusion method: antimicrobial activity of the composites was assessed against bacteria (*Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae*) and fungi (*Candida albicans, Candida glabrata, Candida parapsilosis*). The results were assessed by the size of the

growth inhibition zone (D, mm) using a ruler. RESULTS & DISCUSSION

Characteristic X-Ray patterns:

An amorphous component (blue arrow) was found in the diffraction patterns of composites in the system "BEA zeolites– $RE(NO_3)_3 \times 6H_2O$ (RE = La, Gd) salts" in contrast to the diffraction patterns of composites "MFI zeolites– $RE(NO_3)_3 \times 6H_2O$ (RE = La, Gd) salts", where amorphous components were not detected.

Growth inhibition zone of bacteria and fungi on salts change in the range of 28-50 mm with D_{max} for *S.aureus* on $Gd(NO_3)_3 \times 6H_2O$, and in the range of 45-56 mm with D_{max} for *C.albicans* on $La(NO_3)_3 \times 6H_2O$, which is a record for these microorganisms; D=0 mm for zeolites. Microorganisms showed high sensitivity to composites with D_{max} =45 mm for *P.aeruginosa* on composite **MFI zeolite**– $Gd(NO_3)_3 \times 6H_2O$ (Si/Fe=68), but less compared to salts, while maintaining their excellent biocidal properties.

CONCLUSION

Introduction of RE = La, Gd ions in the form of $RE(NO_3)_3 \times 6H_2O$ salts into biocompatible zeolites (MFI and BEA types) makes it possible to implement antimicrobial properties that are almost not inferior in D values to the salts, and to *significantly reduce the cost of finished products*. The antimicrobial activity of the obtained composites is higher than that of the broad-spectrum antibiotic penicillin, which makes such systems *promising for biomedical purpose*.

Funding: Ministry of Science and Higher Education of the Russian Federation, grant No. FSFZ-2024-0003

https://iocc2024.sciforum.net/