

The 4th International Conference on Forests

23-25 September 2024 | Online

Atmospheric contamination of lutetium in Leicestershire (England) using tree bark biomonitoring

Peña-Fernández A. *1,2, Lobo-Bedmar MC.3, Jagdev GS.2, Peña MA.4

¹ Faculty of Medicine and Health Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain.

² Leicester School of Allied Health Sciences, De Montfort University. The Gateway, Leicester LE19BH, UK.

³ IMIDRA. Departamento de Investigación Agroambiental. "Finca el Encín" Crta. Madrid-Barcelona Km, 38.2, 28800 Alcalá de Henares, Madrid, Spain.

⁴ Facultad de Farmacia, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid, Spain.

Email: antonio.penafer@uah.es

INTRODUCTION

The presence/distribution of lutetium (Lu) in topsoils from Leicester city and surrounding areas (England) represents a low risk for the population (ingestion and dermal contact), meanwhile its content in wild mushrooms might represent some oral risks.

Aim: to monitor the air quality for Lu in Leicester (UK).

MATERIAL AND METHODS

Initial 2-6 millimetres of bark were collected from 55 different trees across Leicester city and 41 from surrounding rural/suburban areas (Fig 1); samples were taken at 1.50–1.80 metres from the ground to limit contamination from topsoil/dust (Guéguen et al., 2011) from September to November 2018.

- Lu was monitored by ICP-MS in cleaned/ground/homogenised samples (Minganti & Drava, 2018) mineralised with HNO₃/H₂O₂ [LoD=0.066 ng/g dry weight (dw)].
- Results were compared with previous studies performed on 106 mushrooms and 850 topsoils collected in the same areas.
- ☐ Data was processed using statistical methods applied to censored data available in the 'NADA' statistical package.

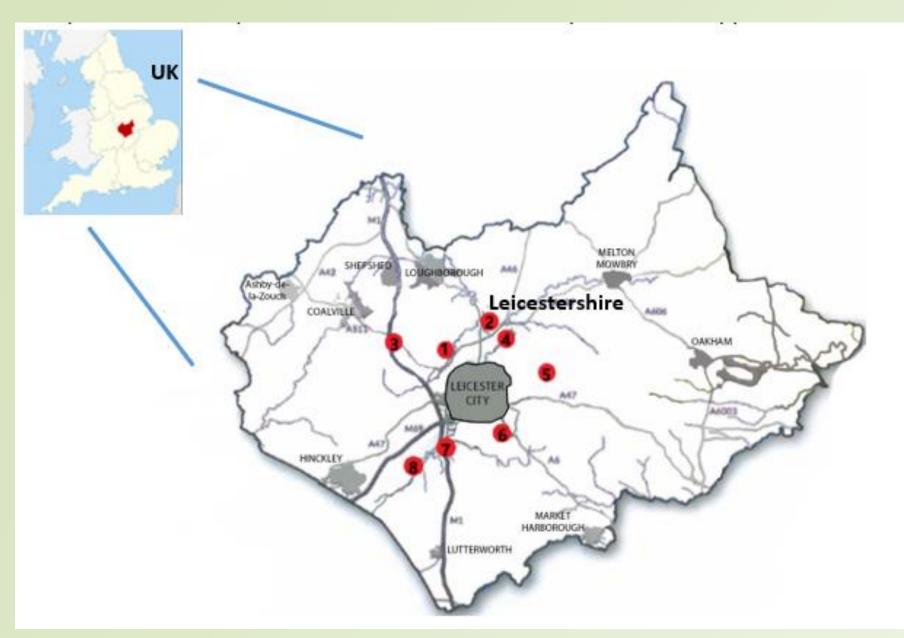


Fig 1. Study area. The city of Leicester is indicated in grey (Leicestershire, UK).

RESULTS AND DISCUSSION

- ✓ Levels of Lu were similar in both main areas; data presented as median and ranges for urban and rural area respectively (in ng/g dw): 0.580 (0.182-2.118) and 0.584 (0.402-1.071).
- √ These results are in line with the distribution observed in topsoils, i.e. Lu did not show statistical differences between urban and rural areas (p-value=0.602; 0.117 vs. 0.123 mg/kg) (Peña-Fernández et al., 2023).
- ✓ However, some bark samples collected in the city presented higher levels of this element.

REFERENCES

Guéguen, F., Stille, P., & Millet, M. (2011). Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine Valley: PCDD/Fs, PCBs and trace metal evidence. Chemosphere, 85(2), 195-202.

Markert, B., & De Li, Z. (1991). Natural background concentrations of rare-earth elements in a forest ecosystem. Science of the total environment, 103(1), 27-35.

Minganti, V., & Drava, G. (2018). Tree bark as a bioindicator of the presence of scandium, yttrium and lanthanum in urban environments. Chemosphere, 193, 847-851.

Peña-Fernández, A., Higueras, M., Repetto, G., Álvarez-Herrera, C., Llana-Ruiz-Cabello, M., Maisanaba, S., ... & Lobo-Bedmar, M. C. (2023). Environmental distribution and exposure to heavy-rare earth elements in Leicestershire (UK). In ISEE Conference Abstracts (Vol. 2023, No. 1).

- √This pattern is similar to the levels observed in wild mushrooms, in which the higher presence of Lu was detected in mushrooms collected in urban areas (0.347 vs. 0.196 ng/g dw).
- ✓Our results suggest similar sources of air contamination by Lu across the main areas monitored, in which topsoils might play a role that should be further assessed although these had a minor contribution to the levels monitored in wild mushrooms.

CONCLUSIONS

Although preliminary, in general, levels of Lu found in the tree bark were lower than the natural background reference concentration of Lu reported in plant materials collected in a forest in northwest Germany (2.5-5 ng/g dw; Markert & De Li, 1991), suggesting a minor contamination by Lu in Leicestershire.